Home
Class 12
MATHS
What is the value of lambda for which ...

What is the value of `lambda` for which
`(lambda hat(i)+hat(j)-hat(k))xx(3hat(i)-2hat(j)+4hat(k))=(2hat(i)-11 hat(j)-7 hat(k))`?

A

2

B

-2

C

1

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) such that: \[ (\lambda \hat{i} + \hat{j} - \hat{k}) \times (3\hat{i} - 2\hat{j} + 4\hat{k}) = 2\hat{i} - 11\hat{j} - 7\hat{k} \] ### Step 1: Set up the cross product in determinant form We can represent the cross product using a determinant: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \lambda & 1 & -1 \\ 3 & -2 & 4 \end{vmatrix} \] ### Step 2: Calculate the determinant Using the determinant formula for a 3x3 matrix, we calculate: \[ = \hat{i} \begin{vmatrix} 1 & -1 \\ -2 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} \lambda & -1 \\ 3 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} \lambda & 1 \\ 3 & -2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ 1 \cdot 4 - (-1) \cdot (-2) = 4 - 2 = 2 \] 2. For \( \hat{j} \): \[ \lambda \cdot 4 - (-1) \cdot 3 = 4\lambda + 3 \] 3. For \( \hat{k} \): \[ \lambda \cdot (-2) - 1 \cdot 3 = -2\lambda - 3 \] Putting it all together, we have: \[ = 2\hat{i} - (4\lambda + 3)\hat{j} + (-2\lambda - 3)\hat{k} \] ### Step 3: Set the result equal to the right-hand side Now we set the result equal to the right-hand side of the equation: \[ 2\hat{i} - (4\lambda + 3)\hat{j} + (-2\lambda - 3)\hat{k} = 2\hat{i} - 11\hat{j} - 7\hat{k} \] ### Step 4: Equate coefficients From the equation, we can equate the coefficients of \( \hat{i}, \hat{j}, \) and \( \hat{k} \): 1. For \( \hat{i} \): \[ 2 = 2 \quad \text{(This is true)} \] 2. For \( \hat{j} \): \[ -(4\lambda + 3) = -11 \implies 4\lambda + 3 = 11 \] 3. For \( \hat{k} \): \[ -2\lambda - 3 = -7 \implies 2\lambda + 3 = 7 \] ### Step 5: Solve the equations From the \( \hat{j} \) equation: \[ 4\lambda + 3 = 11 \implies 4\lambda = 8 \implies \lambda = 2 \] From the \( \hat{k} \) equation: \[ 2\lambda + 3 = 7 \implies 2\lambda = 4 \implies \lambda = 2 \] ### Conclusion Thus, the value of \( \lambda \) is: \[ \lambda = 2 \]

To solve the problem, we need to find the value of \( \lambda \) such that: \[ (\lambda \hat{i} + \hat{j} - \hat{k}) \times (3\hat{i} - 2\hat{j} + 4\hat{k}) = 2\hat{i} - 11\hat{j} - 7\hat{k} \] ### Step 1: Set up the cross product in determinant form ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

What is the value of lamda for which (lamda hat(i) + hat(j)- hat(k)) xx (3 hat(i) -2hat(j) + 4hat(k)) = (2hat(i) - 11 hat(j) - 7hat(k)) ?

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?

The number of distinct real values of lambda , for which the vectors -lambda^(2)hat(i)+hat(j)+hat(k), hat(i)-lambda^(2)hat(j)+hat(k) and hat(i)+hat(j)-lambda^(2)hat(k) are coplanar, is

Find the value of 'lambda' such that vectors : 3hat(i)+lambda hat(j)+5hat(k), hat(i)+2hat(j)-3hat(k) and 2hat(i)-hat(j)+hat(k) are coplanar.

Find the value of 'lambda' such that the vectors : 3hat(i)+lambda hat(j)+5hat(k), hat(i)+2hat(j)-3hat(k) and 2hat(i)-hat(j)+hat(k) are coplanar.

Find 'lambda' and 'mu' if : (hat(i)+3hat(j)+9hat(k))xx(3hat(i)-lambda hat(j)+mu hat(k))=hat(0) .

If [[hat(i)+4hat(j)+6hat(k), 2hat(i)+ahat(j)+3hat(k), hat(i)+2hat(j)-3hat(k)]]=0 then a=

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

NDA PREVIOUS YEARS-VECTORS -MATH
  1. The vector vec(a) xx (vec(b)xx vec(a)) is coplanar with :

    Text Solution

    |

  2. Consider the following : 1. 4hat(i)xx3hat(i)=hat(0) " " 2. (4hat(i)...

    Text Solution

    |

  3. What is the value of lambda for which (lambda hat(i)+hat(j)-hat(k))x...

    Text Solution

    |

  4. The magnitude of the scalar p for which the vector p(-3hat(i)-2hat(j)+...

    Text Solution

    |

  5. The vector 2 hat(j)-hat(k) lies :

    Text Solution

    |

  6. ABCD is a parallelogram . If vec(AB)=vec(a), vec(BC)=vec(b), then what...

    Text Solution

    |

  7. If vec(beta) is perpendicular to both vec(alpha) and vec(lambda) where...

    Text Solution

    |

  8. For any vector vec(alpha), what is (vec(alpha). hat( i)) hat(i)+(vec(a...

    Text Solution

    |

  9. If the magnitudes of vec(a) xx vec(b) equals to vec(a). vec (b), then...

    Text Solution

    |

  10. If |vec(a)|=sqrt(2), |vec(b)|=sqrt(3) and |vec(a)+vec(b)|=sqrt(6), the...

    Text Solution

    |

  11. Which one of the following vectors is normal to the vector hat(i)+hat...

    Text Solution

    |

  12. If theta is the angle between the vectors is 4( hat(i)- hat(k)) and h...

    Text Solution

    |

  13. If the angle between the vectors hat(i)- m hat(j) and hat(j) + hat(k) ...

    Text Solution

    |

  14. What is the vector perpendicular to both the vectors hat(i)-hat(j) and...

    Text Solution

    |

  15. The position vectors of the points A and B are respectively 3hat(i)-5h...

    Text Solution

    |

  16. If the vectors hat(i)-2 x hat(j)-3yhat(k) and hat(i)+3xhat(j)+2yhat(k)...

    Text Solution

    |

  17. What is the value of P for which the vector p(2hat(i)-hat(j)+2hat(k)) ...

    Text Solution

    |

  18. If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and ...

    Text Solution

    |

  19. The vertices of a triangle ABC are A (2,3,1) , B(-2, 2,0), and C(0,1,-...

    Text Solution

    |

  20. The vertices of a triangle ABC are A (2,3,1) , B(-2, 2,0), and C(0,1,-...

    Text Solution

    |