Home
Class 12
MATHS
ABCD is a parallelogram . If vec(AB)=vec...

ABCD is a parallelogram . If `vec(AB)=vec(a), vec(BC)=vec(b)`, then what `vec(BD)` equal to ?

A

`vec(a)+vec(b) `

B

`vec(a)-vec(b)`

C

`-vec(a)-vec(b)`

D

`-vec(a)+vec(b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \vec{BD} \) in the parallelogram ABCD given that \( \vec{AB} = \vec{a} \) and \( \vec{BC} = \vec{b} \). ### Step-by-Step Solution: 1. **Understand the Parallelogram Properties**: In a parallelogram, opposite sides are equal and parallel. Therefore, we have: \[ \vec{AD} = \vec{BC} = \vec{b} \] and \[ \vec{AB} = \vec{CD} = \vec{a} \] 2. **Express \( \vec{BD} \)**: We can express the vector \( \vec{BD} \) using the triangle law of vector addition. In triangle \( ABD \), we have: \[ \vec{AB} + \vec{BD} + \vec{AD} = 0 \] Rearranging this gives: \[ \vec{BD} = -\vec{AB} - \vec{AD} \] 3. **Substitute the Known Vectors**: We know \( \vec{AB} = \vec{a} \) and \( \vec{AD} = \vec{b} \). Substituting these into the equation gives: \[ \vec{BD} = -\vec{a} - \vec{b} \] 4. **Rearranging the Expression**: We can rearrange this to express \( \vec{BD} \) in a more standard form: \[ \vec{BD} = -\vec{a} + (-\vec{b}) = -\vec{a} + \vec{b} \] 5. **Final Answer**: Thus, the vector \( \vec{BD} \) can be expressed as: \[ \vec{BD} = -\vec{a} + \vec{b} \] ### Conclusion: The final expression for \( \vec{BD} \) is: \[ \vec{BD} = -\vec{a} + \vec{b} \]

To solve the problem, we need to find the vector \( \vec{BD} \) in the parallelogram ABCD given that \( \vec{AB} = \vec{a} \) and \( \vec{BC} = \vec{b} \). ### Step-by-Step Solution: 1. **Understand the Parallelogram Properties**: In a parallelogram, opposite sides are equal and parallel. Therefore, we have: \[ \vec{AD} = \vec{BC} = \vec{b} ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

Let ABCD is a parallelogram. If AB= vec(a) and BC= vec(b) then what is BD equal to ?

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

If OACB is a parallelogram with vec OC=vec a and vec AB=vec b, then vec OA is equal to

If |vec(a)|=2, |vec(b)|=5 and |vec(a)xxvec(b)| = 8 , then what is vec(a). vec(b) equal to ?

What is (vec(a)- vec(b)) xx (vec(a) + vec(b)) equal to ?

A parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC) '

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

Given a parallelogram ABCD. If |vec AB|=a,|vec AD|=b&|vec AC|=c, then vec DB*vec AB has the value

If ABCDEF is a regular hexagon with vec AB=vec a and vec BC=vec b, then vec CE equals

OAB is a given triangle such that vec(OA)=vec(a), vec(OB)=vec(b) . Also C is a point on vec(AB) such that vec(AB)=2vec(BC) . What is vec(AC) equal to ?

NDA PREVIOUS YEARS-VECTORS -MATH
  1. The magnitude of the scalar p for which the vector p(-3hat(i)-2hat(j)+...

    Text Solution

    |

  2. The vector 2 hat(j)-hat(k) lies :

    Text Solution

    |

  3. ABCD is a parallelogram . If vec(AB)=vec(a), vec(BC)=vec(b), then what...

    Text Solution

    |

  4. If vec(beta) is perpendicular to both vec(alpha) and vec(lambda) where...

    Text Solution

    |

  5. For any vector vec(alpha), what is (vec(alpha). hat( i)) hat(i)+(vec(a...

    Text Solution

    |

  6. If the magnitudes of vec(a) xx vec(b) equals to vec(a). vec (b), then...

    Text Solution

    |

  7. If |vec(a)|=sqrt(2), |vec(b)|=sqrt(3) and |vec(a)+vec(b)|=sqrt(6), the...

    Text Solution

    |

  8. Which one of the following vectors is normal to the vector hat(i)+hat...

    Text Solution

    |

  9. If theta is the angle between the vectors is 4( hat(i)- hat(k)) and h...

    Text Solution

    |

  10. If the angle between the vectors hat(i)- m hat(j) and hat(j) + hat(k) ...

    Text Solution

    |

  11. What is the vector perpendicular to both the vectors hat(i)-hat(j) and...

    Text Solution

    |

  12. The position vectors of the points A and B are respectively 3hat(i)-5h...

    Text Solution

    |

  13. If the vectors hat(i)-2 x hat(j)-3yhat(k) and hat(i)+3xhat(j)+2yhat(k)...

    Text Solution

    |

  14. What is the value of P for which the vector p(2hat(i)-hat(j)+2hat(k)) ...

    Text Solution

    |

  15. If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and ...

    Text Solution

    |

  16. The vertices of a triangle ABC are A (2,3,1) , B(-2, 2,0), and C(0,1,-...

    Text Solution

    |

  17. The vertices of a triangle ABC are A (2,3,1) , B(-2, 2,0), and C(0,1,-...

    Text Solution

    |

  18. The vertices of a triangle ABC are A (2,3,1) , B(-2, 2,0), and C(0,1,-...

    Text Solution

    |

  19. Consider the vectors bar(a)=hat(i)-2hat(j)+hat(k) and bar(b)=4hat(i)-4...

    Text Solution

    |

  20. Consider the vectors bar(a)=hat(i)-2hat(j)+hat(k) and bar(b)=4hat(i)-4...

    Text Solution

    |