Home
Class 12
MATHS
For any vector vec(alpha), what is (vec(...

For any vector `vec(alpha)`, what is `(vec(alpha). hat( i)) hat(i)+(vec(alpha). hat(j)) hat(j)+(vec(alpha). hat(k)) hat(k)` equal to ?

A

`vec(alpha)`

B

`3 vec(alpha)`

C

`-vec(alpha)`

D

`vec(0)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (\vec{\alpha} \cdot \hat{i}) \hat{i} + (\vec{\alpha} \cdot \hat{j}) \hat{j} + (\vec{\alpha} \cdot \hat{k}) \hat{k} \] where \(\vec{\alpha}\) is a vector expressed in terms of its components along the basis vectors \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\). ### Step-by-Step Solution: 1. **Express the vector \(\vec{\alpha}\)**: Let \(\vec{\alpha} = a \hat{i} + b \hat{j} + c \hat{k}\), where \(a\), \(b\), and \(c\) are the components of the vector along the respective axes. 2. **Calculate \(\vec{\alpha} \cdot \hat{i}\)**: \[ \vec{\alpha} \cdot \hat{i} = (a \hat{i} + b \hat{j} + c \hat{k}) \cdot \hat{i} = a \] This is because the dot product of \(\hat{i}\) with \(\hat{j}\) and \(\hat{k}\) is zero. 3. **Calculate \(\vec{\alpha} \cdot \hat{j}\)**: \[ \vec{\alpha} \cdot \hat{j} = (a \hat{i} + b \hat{j} + c \hat{k}) \cdot \hat{j} = b \] 4. **Calculate \(\vec{\alpha} \cdot \hat{k}\)**: \[ \vec{\alpha} \cdot \hat{k} = (a \hat{i} + b \hat{j} + c \hat{k}) \cdot \hat{k} = c \] 5. **Substitute these results back into the original expression**: \[ (\vec{\alpha} \cdot \hat{i}) \hat{i} + (\vec{\alpha} \cdot \hat{j}) \hat{j} + (\vec{\alpha} \cdot \hat{k}) \hat{k} = a \hat{i} + b \hat{j} + c \hat{k} \] 6. **Recognize that this is simply the vector \(\vec{\alpha}\)**: \[ a \hat{i} + b \hat{j} + c \hat{k} = \vec{\alpha} \] ### Conclusion: Thus, the expression evaluates to: \[ (\vec{\alpha} \cdot \hat{i}) \hat{i} + (\vec{\alpha} \cdot \hat{j}) \hat{j} + (\vec{\alpha} \cdot \hat{k}) \hat{k} = \vec{\alpha} \]

To solve the problem, we need to evaluate the expression: \[ (\vec{\alpha} \cdot \hat{i}) \hat{i} + (\vec{\alpha} \cdot \hat{j}) \hat{j} + (\vec{\alpha} \cdot \hat{k}) \hat{k} \] where \(\vec{\alpha}\) is a vector expressed in terms of its components along the basis vectors \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

For any vector alpha what (alpha . hat(i)) hat(i) + (alpha.hat(j)) hat(j) + (alpha.hat(k)) hat(k) equal to ?

For any vector vec(a) , the value of |vec(a) xx hat(i)|^(2) + |vec(a) xx hat(j)|^(2) + |vec(a) xx hat(k)|^(2) is equal to

For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |vec(a) xx hat(k)|^(2) is equal to

If vec(beta) is perpendicular to both vec(alpha) and vec(gamma) where vec(alpha)= hat(k) and vec(gamma) = 2hat(i) + 3hat(j) + 4hat(k) , then what is vec(beta) equal to ?

For any vector vec r ,prove that vec r=(vec r*hat i)hat i+(vec r*hat j)hat j+(vec r*hat k)hat k

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

If vec(beta) is perpendicular to both vec(alpha) and vec(lambda) where vec(alpha)=hat(k) and vec(lambda)=2hat(i)+3 hat(j)+4 hat(k) , then what is vec(beta) equal to ?

Find vec(A).vec(b) when (i) vec(a)=hat(i)-2hat(j)+hat(k) and vec(b)=3 hat(i)-4 hat(j)-2 hat(k) (ii) vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=-2hat(j)+4hat(k) (iii) vec(a)=hat(i)-hat(j)+5hat(k) and vec(b)=3 hat(i)-2 hat(k)

If angle bisector of vec(a) = 2hat(i) + 3hat(j) + 4hat(k) and vec(b) = 4hat(i) - 2hat(j) + 3 hat(k) is vec(c) = alpha hat(i) + 2hat(j) + beta hat(k) then :

NDA PREVIOUS YEARS-VECTORS -MATH
  1. ABCD is a parallelogram . If vec(AB)=vec(a), vec(BC)=vec(b), then what...

    Text Solution

    |

  2. If vec(beta) is perpendicular to both vec(alpha) and vec(lambda) where...

    Text Solution

    |

  3. For any vector vec(alpha), what is (vec(alpha). hat( i)) hat(i)+(vec(a...

    Text Solution

    |

  4. If the magnitudes of vec(a) xx vec(b) equals to vec(a). vec (b), then...

    Text Solution

    |

  5. If |vec(a)|=sqrt(2), |vec(b)|=sqrt(3) and |vec(a)+vec(b)|=sqrt(6), the...

    Text Solution

    |

  6. Which one of the following vectors is normal to the vector hat(i)+hat...

    Text Solution

    |

  7. If theta is the angle between the vectors is 4( hat(i)- hat(k)) and h...

    Text Solution

    |

  8. If the angle between the vectors hat(i)- m hat(j) and hat(j) + hat(k) ...

    Text Solution

    |

  9. What is the vector perpendicular to both the vectors hat(i)-hat(j) and...

    Text Solution

    |

  10. The position vectors of the points A and B are respectively 3hat(i)-5h...

    Text Solution

    |

  11. If the vectors hat(i)-2 x hat(j)-3yhat(k) and hat(i)+3xhat(j)+2yhat(k)...

    Text Solution

    |

  12. What is the value of P for which the vector p(2hat(i)-hat(j)+2hat(k)) ...

    Text Solution

    |

  13. If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and ...

    Text Solution

    |

  14. The vertices of a triangle ABC are A (2,3,1) , B(-2, 2,0), and C(0,1,-...

    Text Solution

    |

  15. The vertices of a triangle ABC are A (2,3,1) , B(-2, 2,0), and C(0,1,-...

    Text Solution

    |

  16. The vertices of a triangle ABC are A (2,3,1) , B(-2, 2,0), and C(0,1,-...

    Text Solution

    |

  17. Consider the vectors bar(a)=hat(i)-2hat(j)+hat(k) and bar(b)=4hat(i)-4...

    Text Solution

    |

  18. Consider the vectors bar(a)=hat(i)-2hat(j)+hat(k) and bar(b)=4hat(i)-4...

    Text Solution

    |

  19. Let a vector bar(r) make angle 60^(@), 30^(@) with x and y-axes respec...

    Text Solution

    |

  20. Let a vector bar(r) make angle 60^(@), 30^(@) with x and y-axes respec...

    Text Solution

    |