Home
Class 12
MATHS
If |vec(a)|=sqrt(2), |vec(b)|=sqrt(3) an...

If `|vec(a)|=sqrt(2), |vec(b)|=sqrt(3) and |vec(a)+vec(b)|=sqrt(6)`, then what is `|vec(a)-vec(b)|` equal to ?

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector \(\vec{a} - \vec{b}\) given the magnitudes of \(\vec{a}\), \(\vec{b}\), and \(\vec{a} + \vec{b}\). ### Step-by-Step Solution: 1. **Given Values**: - \(|\vec{a}| = \sqrt{2}\) - \(|\vec{b}| = \sqrt{3}\) - \(|\vec{a} + \vec{b}| = \sqrt{6}\) 2. **Using the Formula for Magnitude of Sum of Vectors**: We know that: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2 |\vec{a}| |\vec{b}| \cos \theta \] where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). 3. **Substituting the Known Values**: \[ |\vec{a} + \vec{b}|^2 = (\sqrt{6})^2 = 6 \] \[ |\vec{a}|^2 = (\sqrt{2})^2 = 2 \] \[ |\vec{b}|^2 = (\sqrt{3})^2 = 3 \] Thus, we have: \[ 6 = 2 + 3 + 2 \cdot \sqrt{2} \cdot \sqrt{3} \cdot \cos \theta \] 4. **Simplifying the Equation**: \[ 6 = 5 + 2 \cdot \sqrt{6} \cdot \cos \theta \] \[ 1 = 2 \cdot \sqrt{6} \cdot \cos \theta \] \[ \cos \theta = \frac{1}{2\sqrt{6}} \] 5. **Using the Formula for Magnitude of Difference of Vectors**: We also have: \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2 |\vec{a}| |\vec{b}| \cos \theta \] 6. **Substituting the Known Values**: \[ |\vec{a} - \vec{b}|^2 = 2 + 3 - 2 \cdot \sqrt{2} \cdot \sqrt{3} \cdot \frac{1}{2\sqrt{6}} \] \[ = 5 - \frac{2 \cdot \sqrt{6}}{2\sqrt{6}} = 5 - 1 = 4 \] 7. **Finding the Magnitude**: \[ |\vec{a} - \vec{b}| = \sqrt{4} = 2 \] Thus, the magnitude \(|\vec{a} - \vec{b}|\) is equal to \(2\).

To solve the problem, we need to find the magnitude of the vector \(\vec{a} - \vec{b}\) given the magnitudes of \(\vec{a}\), \(\vec{b}\), and \(\vec{a} + \vec{b}\). ### Step-by-Step Solution: 1. **Given Values**: - \(|\vec{a}| = \sqrt{2}\) - \(|\vec{b}| = \sqrt{3}\) - \(|\vec{a} + \vec{b}| = \sqrt{6}\) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

If |vec(a)| = sqrt2, |vec(b)|=sqrt3 and |vec(a) + vec(b)|= sqrt6 , then what is |vec(a)- vec(b)| equal to ?

If |vec(a)|=2, |vec(b)|=5 and |vec(a)xxvec(b)| = 8 , then what is vec(a). vec(b) equal to ?

If |vec(a)|=7, |vec(b)|=11 and |vec(a)+vec(b)|=10 sqrt(3) , then |vec(a)-vec(b)| is equal to

If vec(a) and vec(b) are vectors such that |vec(a)|=sqrt(3), |vec(b)|=2 and vec(a).vec(b)=sqrt(6) then the angle between vec(a) and vec(b) is

If |vec(a)| = sqrt(26) , |vec(b)| = 7 , and | vec(a) xx vec(b)| = 35 . Find vec(a) . Vec(b) .

If | vec a | = sqrt (26), | vec b | = sqrt (7) and | vec a xxvec b | = 13 then vec a.vec b =

If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B) , then the value of |vec(A)+vec(B)| is

If | vec a | = sqrt (26), | vec b | = 7 and | vec a xxvec b | = 35 then vec a * vec b =

If vec a,vec b, and vec c are such that [vec avec bvec c]=1,vec c=lambdavec a xxvec b, angle, between vec a and vec b is (2 pi)/(3),|vec a|=sqrt(2),|vec b|=sqrt(3) and |vec c|=(1)/(sqrt(3)) then the angel between vec a and vec b is (pi)/(6) b.(pi)/(4) c.(pi)/(3) d.(pi)/(2)

NDA PREVIOUS YEARS-VECTORS -MATH
  1. For any vector vec(alpha), what is (vec(alpha). hat( i)) hat(i)+(vec(a...

    Text Solution

    |

  2. If the magnitudes of vec(a) xx vec(b) equals to vec(a). vec (b), then...

    Text Solution

    |

  3. If |vec(a)|=sqrt(2), |vec(b)|=sqrt(3) and |vec(a)+vec(b)|=sqrt(6), the...

    Text Solution

    |

  4. Which one of the following vectors is normal to the vector hat(i)+hat...

    Text Solution

    |

  5. If theta is the angle between the vectors is 4( hat(i)- hat(k)) and h...

    Text Solution

    |

  6. If the angle between the vectors hat(i)- m hat(j) and hat(j) + hat(k) ...

    Text Solution

    |

  7. What is the vector perpendicular to both the vectors hat(i)-hat(j) and...

    Text Solution

    |

  8. The position vectors of the points A and B are respectively 3hat(i)-5h...

    Text Solution

    |

  9. If the vectors hat(i)-2 x hat(j)-3yhat(k) and hat(i)+3xhat(j)+2yhat(k)...

    Text Solution

    |

  10. What is the value of P for which the vector p(2hat(i)-hat(j)+2hat(k)) ...

    Text Solution

    |

  11. If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and ...

    Text Solution

    |

  12. The vertices of a triangle ABC are A (2,3,1) , B(-2, 2,0), and C(0,1,-...

    Text Solution

    |

  13. The vertices of a triangle ABC are A (2,3,1) , B(-2, 2,0), and C(0,1,-...

    Text Solution

    |

  14. The vertices of a triangle ABC are A (2,3,1) , B(-2, 2,0), and C(0,1,-...

    Text Solution

    |

  15. Consider the vectors bar(a)=hat(i)-2hat(j)+hat(k) and bar(b)=4hat(i)-4...

    Text Solution

    |

  16. Consider the vectors bar(a)=hat(i)-2hat(j)+hat(k) and bar(b)=4hat(i)-4...

    Text Solution

    |

  17. Let a vector bar(r) make angle 60^(@), 30^(@) with x and y-axes respec...

    Text Solution

    |

  18. Let a vector bar(r) make angle 60^(@), 30^(@) with x and y-axes respec...

    Text Solution

    |

  19. Let |bar(a)|=7, |bar(b)|=11, | bar(a)+bar(b)|=10 sqrt(3) What is |b...

    Text Solution

    |

  20. Let |bar(a)|=7, |bar(b)|=11, | bar(a)+bar(b)|=10 sqrt(3) What is th...

    Text Solution

    |