Home
Class 12
MATHS
What is the area of the triangle OAB whe...

What is the area of the triangle OAB where O is the origin, `vec(OA)=3hat(i)-hat(j)+hat(k) and vec(OB)=2hat(i)+hat(j)-3hat(k)` ?

A

`5sqrt(6)` square unit

B

`(5sqrt(6))/(2)` square unit

C

`sqrt(6)` square unit

D

`sqrt(30)` square unit

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of triangle OAB where O is the origin, and the vectors \(\vec{OA}\) and \(\vec{OB}\) are given, we can follow these steps: ### Step 1: Identify the vectors Given: \[ \vec{OA} = 3\hat{i} - \hat{j} + \hat{k} \] \[ \vec{OB} = 2\hat{i} + \hat{j} - 3\hat{k} \] ### Step 2: Compute the cross product \(\vec{OA} \times \vec{OB}\) To find the area of triangle OAB, we need to calculate the cross product \(\vec{OA} \times \vec{OB}\). Using the determinant method: \[ \vec{OA} \times \vec{OB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 1 \\ 2 & 1 & -3 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -1 & 1 \\ 1 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 1 \\ 2 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -1 \\ 2 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} -1 & 1 \\ 1 & -3 \end{vmatrix} = (-1)(-3) - (1)(1) = 3 - 1 = 2\) 2. \(\begin{vmatrix} 3 & 1 \\ 2 & -3 \end{vmatrix} = (3)(-3) - (1)(2) = -9 - 2 = -11\) 3. \(\begin{vmatrix} 3 & -1 \\ 2 & 1 \end{vmatrix} = (3)(1) - (-1)(2) = 3 + 2 = 5\) Putting it all together: \[ \vec{OA} \times \vec{OB} = 2\hat{i} + 11\hat{j} + 5\hat{k} \] ### Step 3: Calculate the magnitude of the cross product The magnitude of the vector \(\vec{OA} \times \vec{OB}\) is given by: \[ |\vec{OA} \times \vec{OB}| = \sqrt{(2)^2 + (11)^2 + (5)^2} = \sqrt{4 + 121 + 25} = \sqrt{150} \] ### Step 4: Simplify the magnitude We can simplify \(\sqrt{150}\): \[ \sqrt{150} = \sqrt{25 \times 6} = 5\sqrt{6} \] ### Step 5: Calculate the area of triangle OAB The area \(A\) of triangle OAB is given by: \[ A = \frac{1}{2} |\vec{OA} \times \vec{OB}| = \frac{1}{2} \times 5\sqrt{6} = \frac{5\sqrt{6}}{2} \] Thus, the area of triangle OAB is: \[ \boxed{\frac{5\sqrt{6}}{2}} \text{ square units} \] ---

To find the area of triangle OAB where O is the origin, and the vectors \(\vec{OA}\) and \(\vec{OB}\) are given, we can follow these steps: ### Step 1: Identify the vectors Given: \[ \vec{OA} = 3\hat{i} - \hat{j} + \hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

What is the area of Delta OAB , where O is the origin, OA= 3 hat(i) - hat(j) + hat(k) and OB= 2 hat(i) + hat(j)- 3hat(k) ?

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The area of the triangle whose adjacent sides are : vec(a)=3hat(i)+hat(j)+4hat(k) and vec(b)=hat(i)-hat(j)+hat(k) is :

If vec(a)=2hat(i)+3hat(j)-hat(k) , then |vec(a)| is :

Find a unit vector in the direction of (vec(a)+vec(b)) , where : vec(a)=2hat(i)+2hat(j)-5hat(k) and vec(b)=2hat(i)+hat(j)+3hat(k) .

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(j)+2hat(k) and vec(b)= 2hat(i) +hat(j)-2hat(k) respectively. Find the area of : (i) the triangle OAB (ii) the parallelogram formed by vec(OA) and vec(OB) as adjacent sides.

The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(j)+2hat(k) and vec(b)= 2hat(i) +hat(j)-2hat(k) respectively. Find the area of : (i) the triangle OAB (ii) the parallelogram formed by (OA) and (OB) as adjacent sides.

NDA PREVIOUS YEARS-VECTORS -MATH
  1. If |vec(a)|=2, |vec(b)|=5 and |vec(a)xxvec(b)| = 8, then what is vec(a...

    Text Solution

    |

  2. If |vec(a)+vec(b)|=|vec(a)-vec(b)|, then which one of the following is...

    Text Solution

    |

  3. What is the area of the triangle OAB where O is the origin, vec(OA)=3h...

    Text Solution

    |

  4. Which one of the following is the unit vector perpendicular to both ve...

    Text Solution

    |

  5. What is the interior acute angle of the parallelogram whose sides are ...

    Text Solution

    |

  6. For what value of lambda are the vectors lambda hat(i)+(1 + lambda) ha...

    Text Solution

    |

  7. Vector vec a , vec b and vec c are such that vec a+ vec b+ vec c= v...

    Text Solution

    |

  8. vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(...

    Text Solution

    |

  9. vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(...

    Text Solution

    |

  10. vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(...

    Text Solution

    |

  11. The adjacent sides AB and AC of a triangle ABC are represented by the ...

    Text Solution

    |

  12. A force vec(F)=3hat(i)+4 hat(j)-3hat(k) is applied at the point P, who...

    Text Solution

    |

  13. Given that the vectors alpha and beta are non-collinear. The values of...

    Text Solution

    |

  14. If |vec(a)|=7, |vec(b)|=11 and |vec(a)+vec(b)|=10 sqrt(3), then |vec(a...

    Text Solution

    |

  15. Let alpha, beta , lambda be distinct real numbers. The points with pos...

    Text Solution

    |

  16. If vec(a) + vec(b)+vec(c)=vec(0), then which of the following is/are c...

    Text Solution

    |

  17. If |vec(a)+vec(b)|=|vec(a)-vec(b)|, then which one of the following is...

    Text Solution

    |

  18. The area of the square, one of whose diagonals is 3hat(i)+4hat(j) is

    Text Solution

    |

  19. A B C D is parallelogram and P is the point of intersection of its dia...

    Text Solution

    |

  20. If vec(b) and vec(c) are the position vectors of the points B and C re...

    Text Solution

    |