Home
Class 12
MATHS
vec(a)+vec(b)+vec(c)=vec(0) such that |v...

`vec(a)+vec(b)+vec(c)=vec(0)` such that `|vec(a)|=3, |vec(b)|=5 and |vec(c)|=7`. What is cosine of the angle between `vec(b) and vec(c)` ?

A

`11//12`

B

`13//14`

C

`-11//12`

D

`-13//14`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given for the vectors: 1. **Given Equation**: \[ \vec{a} + \vec{b} + \vec{c} = \vec{0} \] This implies: \[ \vec{b} + \vec{c} = -\vec{a} \] 2. **Magnitude of Vectors**: We know the magnitudes of the vectors: \[ |\vec{a}| = 3, \quad |\vec{b}| = 5, \quad |\vec{c}| = 7 \] 3. **Squaring Both Sides**: We square both sides of the equation \(\vec{b} + \vec{c} = -\vec{a}\): \[ |\vec{b} + \vec{c}|^2 = |\vec{a}|^2 \] 4. **Expanding the Left Side**: Using the formula for the square of a vector sum: \[ |\vec{b} + \vec{c}|^2 = |\vec{b}|^2 + |\vec{c}|^2 + 2 \vec{b} \cdot \vec{c} \] Therefore, we have: \[ |\vec{b}|^2 + |\vec{c}|^2 + 2 \vec{b} \cdot \vec{c} = |\vec{a}|^2 \] 5. **Substituting the Magnitudes**: Substitute the known magnitudes into the equation: \[ 5^2 + 7^2 + 2 \vec{b} \cdot \vec{c} = 3^2 \] This simplifies to: \[ 25 + 49 + 2 \vec{b} \cdot \vec{c} = 9 \] 6. **Combining Terms**: Combine the constants: \[ 74 + 2 \vec{b} \cdot \vec{c} = 9 \] 7. **Isolating the Dot Product**: Rearranging gives: \[ 2 \vec{b} \cdot \vec{c} = 9 - 74 \] \[ 2 \vec{b} \cdot \vec{c} = -65 \] Therefore: \[ \vec{b} \cdot \vec{c} = -\frac{65}{2} \] 8. **Using the Dot Product Formula**: The dot product can also be expressed as: \[ \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos \theta \] Substituting the magnitudes: \[ -\frac{65}{2} = 5 \cdot 7 \cos \theta \] \[ -\frac{65}{2} = 35 \cos \theta \] 9. **Solving for Cosine**: Now, isolate \(\cos \theta\): \[ \cos \theta = -\frac{65}{2 \cdot 35} \] Simplifying this gives: \[ \cos \theta = -\frac{65}{70} = -\frac{13}{14} \] Thus, the cosine of the angle between \(\vec{b}\) and \(\vec{c}\) is: \[ \cos \theta = -\frac{13}{14} \]

To solve the problem, we start with the equation given for the vectors: 1. **Given Equation**: \[ \vec{a} + \vec{b} + \vec{c} = \vec{0} \] This implies: \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is |vec(a)+vec(b)| equal to ?

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is the angle between vec(a) and vec(b) ?

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is vec (a). vec(b) + vec(b). vec(c) + vec(c). vec (a) equal to ?

If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec(b) + vec(c )=0 and |vec(a)|=3, |vec(b)|=5,|vec(C )|=7 , find the angle between vec(a) and vec(b) .

Given that vec(A)+vec(B)=vec(C ) . If |vec(A)|=4, |vec(B)|=5 and |vec(C )|=sqrt(61) , the angle between vec(A) and vec(B) is

If |vec a|=3,|vec b|=5,|vec c|=7 and vec a+vec b+vec c=0 then angle between vec a and vec b is

Vector vec a,vec b and vec c are such that vec a+vec b+vec c=vec 0 and |a|=3,|vec b|=5 and |vec c|=7. Find the angle between vec a and vec b.

vec a+vec b+vec c=vec 0,vec |a|=3,|vec b|=5 and |vec c|=7 find the anglebetweeen vec a and vec b

If vec(a)=vec(b)+vec(c ) , then |vec(a)|=|vec(b)+vec(c )| .

NDA PREVIOUS YEARS-VECTORS -MATH
  1. Vector vec a , vec b and vec c are such that vec a+ vec b+ vec c= v...

    Text Solution

    |

  2. vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(...

    Text Solution

    |

  3. vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(...

    Text Solution

    |

  4. vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(...

    Text Solution

    |

  5. The adjacent sides AB and AC of a triangle ABC are represented by the ...

    Text Solution

    |

  6. A force vec(F)=3hat(i)+4 hat(j)-3hat(k) is applied at the point P, who...

    Text Solution

    |

  7. Given that the vectors alpha and beta are non-collinear. The values of...

    Text Solution

    |

  8. If |vec(a)|=7, |vec(b)|=11 and |vec(a)+vec(b)|=10 sqrt(3), then |vec(a...

    Text Solution

    |

  9. Let alpha, beta , lambda be distinct real numbers. The points with pos...

    Text Solution

    |

  10. If vec(a) + vec(b)+vec(c)=vec(0), then which of the following is/are c...

    Text Solution

    |

  11. If |vec(a)+vec(b)|=|vec(a)-vec(b)|, then which one of the following is...

    Text Solution

    |

  12. The area of the square, one of whose diagonals is 3hat(i)+4hat(j) is

    Text Solution

    |

  13. A B C D is parallelogram and P is the point of intersection of its dia...

    Text Solution

    |

  14. If vec(b) and vec(c) are the position vectors of the points B and C re...

    Text Solution

    |

  15. If the position vector vec a at the point (5,n) is such that |vec a| =...

    Text Solution

    |

  16. If |vec(a)|=2 and |vec(b)|=3 , then |vec(a)xxvec(b)|^(2)+|vec(a).vec(b...

    Text Solution

    |

  17. Consider the following inequalities in respect of vectors vec(a) and v...

    Text Solution

    |

  18. If the magnitude of difference of two unit vectors is sqrt(3), then th...

    Text Solution

    |

  19. If the vectors alpha hat(i) + alpha hat(j) + lambda hat(k), hat(i) + h...

    Text Solution

    |

  20. The vectors vec(a), vec(b), vec(c) and vec(d) are such that vec(a)xx v...

    Text Solution

    |