Home
Class 12
MATHS
A force vec(F)=3hat(i)+4 hat(j)-3hat(k) ...

A force `vec(F)=3hat(i)+4 hat(j)-3hat(k)` is applied at the point P, whose position vector is `vec(r) = hat(2i)-2hat(j)-3hat(k)`. What is the magnitude of the moment of the force about the origin ?

A

23 units

B

19 units

C

18 units

D

21 units

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the moment of the force about the origin, we will follow these steps: ### Step 1: Identify the vectors We are given: - Force vector: \(\vec{F} = 3\hat{i} + 4\hat{j} - 3\hat{k}\) - Position vector: \(\vec{r} = 2\hat{i} - 2\hat{j} - 3\hat{k}\) ### Step 2: Use the formula for the moment of force The moment of the force \(\vec{M}\) about the origin is given by the cross product: \[ \vec{M} = \vec{r} \times \vec{F} \] ### Step 3: Calculate the cross product To calculate the cross product \(\vec{r} \times \vec{F}\), we can set up a determinant: \[ \vec{M} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -2 & -3 \\ 3 & 4 & -3 \end{vmatrix} \] Calculating this determinant: \[ \vec{M} = \hat{i} \begin{vmatrix} -2 & -3 \\ 4 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -3 \\ 3 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -2 \\ 3 & 4 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} -2 & -3 \\ 4 & -3 \end{vmatrix} = (-2)(-3) - (-3)(4) = 6 + 12 = 18 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 2 & -3 \\ 3 & -3 \end{vmatrix} = (2)(-3) - (-3)(3) = -6 + 9 = 3 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 2 & -2 \\ 3 & 4 \end{vmatrix} = (2)(4) - (-2)(3) = 8 + 6 = 14 \] Putting it all together: \[ \vec{M} = 18\hat{i} - 3\hat{j} + 14\hat{k} \] ### Step 4: Calculate the magnitude of the moment The magnitude of \(\vec{M}\) is given by: \[ |\vec{M}| = \sqrt{(18)^2 + (-3)^2 + (14)^2} \] Calculating this: \[ |\vec{M}| = \sqrt{324 + 9 + 196} = \sqrt{529} = 23 \] ### Final Answer The magnitude of the moment of the force about the origin is \(23\) units. ---

To find the magnitude of the moment of the force about the origin, we will follow these steps: ### Step 1: Identify the vectors We are given: - Force vector: \(\vec{F} = 3\hat{i} + 4\hat{j} - 3\hat{k}\) - Position vector: \(\vec{r} = 2\hat{i} - 2\hat{j} - 3\hat{k}\) ### Step 2: Use the formula for the moment of force ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

A force vec(F) = (2 hat(i) + 3 hat(j) + 4 hat(k)) N is applied to a point having position vector vec(r) = (3 hat(i) + 2 hat(j) + hat(k)) m. Find the torque due to the force about the axis passing through origin.

Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(k) act at a point P, with position vector 4hat(i)-3hat(j)-hat(k) . Find the moment of the resultant of these force about the point Q whose position vector is 6hat(i)+hat(j)-3hat(k) .

Knowledge Check

  • A force F= 3hat(i) + 4hat(j) - 3hat(k) is applied at the point P. whose position vector is r= 2 hat(i) -2hat(j) - 3hat(k) . What is the magnitude of the moment of the force about the origin?

    A
    A. 23 units
    B
    B. 19 units
    C
    C. 18 units
    D
    D. 21 units
  • A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector is 2hat(i)-hat(j) . Find the moment of force F about the origin.

    A
    `hat(i)+2hat(j)-4hat(k)`
    B
    `hati-2hatj-4hatk`
    C
    `hati+2hatj+4hatk`
    D
    `hati-2hatj+4hatk`
  • The force 7 hat i+ 3 hat j - 5 hat k acts on a particle whose position vector is hat i- hat j + hat k . What is the torque of a given force about the origin ?

    A
    `2 hat i+ 12 hat j + 10 hat k`
    B
    `2 hat i+ 10 hat j + 12 hat k`
    C
    `2 hat i+10 hat j + 10 hat k`
    D
    `10 hat i+ 2 hat j + hat k`
  • Similar Questions

    Explore conceptually related problems

    A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector is 2hat(i)-hat(j) . Find the moment of force F about the origin.

    Let vec(F)=2hat(i)+4hat(j)+3hat(k) at the point P with position vector hat(i)-hat(j)+3hat(k) . Find the moment of vec(F) about the line through the origin O in the direction of the vector vec(a)=hat(i)+2hat(j)+2hat(k) .

    Linear momentum vec(P)=2hat(i)+4hat(j)+5hat(k) and position vector is vec(r)=3hat(i)-hat(j)+2hat(k) , the angular momentum is given by

    A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3hat(k)) to the point B (3hat(i) - hat(j) + 5hat(k)) . The work done by the force will be

    The torque of force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(r)=7hat(i)+3hat(j)+hat(k) is ______________?