Home
Class 12
MATHS
If |vec(a)|=7, |vec(b)|=11 and |vec(a)+v...

If `|vec(a)|=7, |vec(b)|=11 and |vec(a)+vec(b)|=10 sqrt(3)`, then `|vec(a)-vec(b)|` is equal to

A

40

B

10

C

`4sqrt(10)`

D

`2sqrt(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of \(|\vec{a} - \vec{b}|\) given the following information: 1. \(|\vec{a}| = 7\) 2. \(|\vec{b}| = 11\) 3. \(|\vec{a} + \vec{b}| = 10\sqrt{3}\) ### Step 1: Use the formula for the magnitude of the sum of two vectors The formula for the magnitude of the sum of two vectors is given by: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|\cos\theta \] Where \(\theta\) is the angle between the vectors \(\vec{a}\) and \(\vec{b}\). ### Step 2: Substitute the known values into the equation We know: - \(|\vec{a}|^2 = 7^2 = 49\) - \(|\vec{b}|^2 = 11^2 = 121\) - \(|\vec{a} + \vec{b}|^2 = (10\sqrt{3})^2 = 300\) Now substituting these values into the equation: \[ 300 = 49 + 121 + 2 \cdot 7 \cdot 11 \cdot \cos\theta \] ### Step 3: Simplify the equation Combine the constants: \[ 300 = 170 + 154\cos\theta \] Now isolate \(\cos\theta\): \[ 300 - 170 = 154\cos\theta \] \[ 130 = 154\cos\theta \] \[ \cos\theta = \frac{130}{154} = \frac{65}{77} \] ### Step 4: Use the formula for the magnitude of the difference of two vectors The formula for the magnitude of the difference of two vectors is given by: \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos\theta \] ### Step 5: Substitute the known values into the equation Substituting the values we have: \[ |\vec{a} - \vec{b}|^2 = 49 + 121 - 2 \cdot 7 \cdot 11 \cdot \frac{65}{77} \] ### Step 6: Calculate the components First, calculate \(49 + 121\): \[ 49 + 121 = 170 \] Now calculate \(2 \cdot 7 \cdot 11 \cdot \frac{65}{77}\): \[ 2 \cdot 7 \cdot 11 = 154 \] \[ 154 \cdot \frac{65}{77} = 130 \] ### Step 7: Substitute back into the equation Now we can substitute back: \[ |\vec{a} - \vec{b}|^2 = 170 - 130 = 40 \] ### Step 8: Take the square root to find the magnitude Finally, take the square root to find \(|\vec{a} - \vec{b}|\): \[ |\vec{a} - \vec{b}| = \sqrt{40} = 2\sqrt{10} \] ### Final Answer Thus, the magnitude \(|\vec{a} - \vec{b}|\) is equal to \(2\sqrt{10}\). ---

To solve the problem, we need to find the magnitude of \(|\vec{a} - \vec{b}|\) given the following information: 1. \(|\vec{a}| = 7\) 2. \(|\vec{b}| = 11\) 3. \(|\vec{a} + \vec{b}| = 10\sqrt{3}\) ### Step 1: Use the formula for the magnitude of the sum of two vectors The formula for the magnitude of the sum of two vectors is given by: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

If |vec(a)|=sqrt(2), |vec(b)|=sqrt(3) and |vec(a)+vec(b)|=sqrt(6) , then what is |vec(a)-vec(b)| equal to ?

If |vec(a)| = sqrt2, |vec(b)|=sqrt3 and |vec(a) + vec(b)|= sqrt6 , then what is |vec(a)- vec(b)| equal to ?

If |vec(a)|=2 and |vec(b)|=3 , then |vec(a) xx vec(b)|^(2)+ |vec(a).vec(b)|^(2) is equal to

If |vec(a)|=2 and |vec(b)|=3 , then |vec(a)xxvec(b)|^(2)+|vec(a).vec(b)|^(2) is equal to

Find the angle between vec(a) and vec(b) , when (i) |vec(a)|=2, |vec(b)|=1 and vec(A).vec(B)=sqrt(3) (ii) |vec(a)|=|vec(b)|=sqrt(2) and vec(a).vec(b)=-1 .

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is |vec(a)+vec(b)| equal to ?

If |vec(a)| = sqrt(26) , |vec(b)| = 7 , and | vec(a) xx vec(b)| = 35 . Find vec(a) . Vec(b) .

If vec(a) and vec(b) are vectors such that |vec(a)|=sqrt(3), |vec(b)|=2 and vec(a).vec(b)=sqrt(6) then the angle between vec(a) and vec(b) is

| vec a | = 5, | vec a-vec b | = 8 and | vec a + vec b | = 10 then | vec b | is equal to

NDA PREVIOUS YEARS-VECTORS -MATH
  1. A force vec(F)=3hat(i)+4 hat(j)-3hat(k) is applied at the point P, who...

    Text Solution

    |

  2. Given that the vectors alpha and beta are non-collinear. The values of...

    Text Solution

    |

  3. If |vec(a)|=7, |vec(b)|=11 and |vec(a)+vec(b)|=10 sqrt(3), then |vec(a...

    Text Solution

    |

  4. Let alpha, beta , lambda be distinct real numbers. The points with pos...

    Text Solution

    |

  5. If vec(a) + vec(b)+vec(c)=vec(0), then which of the following is/are c...

    Text Solution

    |

  6. If |vec(a)+vec(b)|=|vec(a)-vec(b)|, then which one of the following is...

    Text Solution

    |

  7. The area of the square, one of whose diagonals is 3hat(i)+4hat(j) is

    Text Solution

    |

  8. A B C D is parallelogram and P is the point of intersection of its dia...

    Text Solution

    |

  9. If vec(b) and vec(c) are the position vectors of the points B and C re...

    Text Solution

    |

  10. If the position vector vec a at the point (5,n) is such that |vec a| =...

    Text Solution

    |

  11. If |vec(a)|=2 and |vec(b)|=3 , then |vec(a)xxvec(b)|^(2)+|vec(a).vec(b...

    Text Solution

    |

  12. Consider the following inequalities in respect of vectors vec(a) and v...

    Text Solution

    |

  13. If the magnitude of difference of two unit vectors is sqrt(3), then th...

    Text Solution

    |

  14. If the vectors alpha hat(i) + alpha hat(j) + lambda hat(k), hat(i) + h...

    Text Solution

    |

  15. The vectors vec(a), vec(b), vec(c) and vec(d) are such that vec(a)xx v...

    Text Solution

    |

  16. Let hat(a), hat(b) be two unit vectors and theta be the angle between...

    Text Solution

    |

  17. Let hat(a), hat(b) be two unit vectors and theta be the angle between...

    Text Solution

    |

  18. What is a vector of unit length orthogonal to both the vectors hat(...

    Text Solution

    |

  19. If veca, vecb, vecc are the position vectors of the vertices of an equ...

    Text Solution

    |

  20. What is the area of the parallelogram having diagonals 3hat(i) + hat(j...

    Text Solution

    |