Home
Class 12
MATHS
What is a vector of unit length orthogon...

What is a vector of unit length orthogonal to both the vectors
`hat(i) + hat(j) + hat(k) and 2 hat(i) + 3 hat(j) - hat(k)`?

A

`(-4hat(i)+3hat(j)-hat(k))/(sqrt(26))`

B

`(-4hat(i)+3hat(j)+hat(k))/(sqrt(26))`

C

`(-3hat(i)+2hat(j)-hat(k))/(sqrt(14))`

D

`(-3hat(i)+2hat(j)+hat(k))/(sqrt(14))`

Text Solution

AI Generated Solution

The correct Answer is:
To find a vector of unit length that is orthogonal to both vectors \( \hat{i} + \hat{j} + \hat{k} \) and \( 2\hat{i} + 3\hat{j} - \hat{k} \), we can follow these steps: ### Step 1: Define the Vectors Let: - \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{B} = 2\hat{i} + 3\hat{j} - \hat{k} \) ### Step 2: Compute the Cross Product To find a vector orthogonal to both \( \mathbf{A} \) and \( \mathbf{B} \), we compute the cross product \( \mathbf{A} \times \mathbf{B} \). Using the determinant form for the cross product: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 3 & -1 \end{vmatrix} \] ### Step 3: Calculate the Determinant Expanding the determinant: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} 1 & 1 \\ 3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 1 \\ 3 & -1 \end{vmatrix} = (1)(-1) - (1)(3) = -1 - 3 = -4 \) 2. \( \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = (1)(-1) - (1)(2) = -1 - 2 = -3 \) 3. \( \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = (1)(3) - (1)(2) = 3 - 2 = 1 \) Putting it all together: \[ \mathbf{A} \times \mathbf{B} = -4\hat{i} + 3\hat{j} + 1\hat{k} \] ### Step 4: Find the Magnitude of the Cross Product Now, we calculate the magnitude of the vector \( \mathbf{C} = -4\hat{i} + 3\hat{j} + \hat{k} \): \[ |\mathbf{C}| = \sqrt{(-4)^2 + (3)^2 + (1)^2} = \sqrt{16 + 9 + 1} = \sqrt{26} \] ### Step 5: Normalize the Vector To find the unit vector \( \mathbf{U} \) in the direction of \( \mathbf{C} \): \[ \mathbf{U} = \frac{\mathbf{C}}{|\mathbf{C}|} = \frac{-4\hat{i} + 3\hat{j} + \hat{k}}{\sqrt{26}} \] ### Final Answer Thus, the vector of unit length orthogonal to both given vectors is: \[ \mathbf{U} = \frac{-4\hat{i} + 3\hat{j} + \hat{k}}{\sqrt{26}} \]

To find a vector of unit length that is orthogonal to both vectors \( \hat{i} + \hat{j} + \hat{k} \) and \( 2\hat{i} + 3\hat{j} - \hat{k} \), we can follow these steps: ### Step 1: Define the Vectors Let: - \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{B} = 2\hat{i} + 3\hat{j} - \hat{k} \) ### Step 2: Compute the Cross Product ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

What is vector of unit length orthogonal to both the vectors hat(i) + hat(j) + hat(k) and 2hat(i) + 3hat(j) - hat(k) ?

What is the unit vector perpendicular to the following vectors 2 hat(i) + 2 hat(j) - hat(k) and 6 hat(i) - 3 hat(j) + 2 hat(k)

A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + hat(k ) and 3hat(i) - 4hat(i) - hat(k) is

What is the locus of the point (x,y) for which the vectors (hat(i) - x hat(j) - 2hat(k)) and (2 hat(i) + hat(j) + y hat(k)) are orthogonal?

Find a unit vector perpendicular to both the vectors (2hat(i)+3hat(j)+hat(k)) and (hat(i)-hat(j)-2hat(k)) .

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

The angle between the vectors (hat i + hat j + hat k) and ( hat i - hat j -hat k) is

What is the value of b such that the scalar product of the vector hat(i) + hat(j) + hat(k) with the unit vector parallel to the sum of the vectors 2hat(i) + 4hat(j)-5hat(k) and b hat(i) + 2hat(j) + 3hat(k) is unity ?

What is the projection of the vector hat(i)-2 hat(j) + hat(k) on the vector 4hat(i) - 4hat(j)+ 7hat(k) ?

The unit vector parallel to the resultant of the vectors vec(A) = hat(i) + 2 hat(j) - hat(k) and vec(B) = 2 hat(i) + 4 hat(j) - hat(k) is

NDA PREVIOUS YEARS-VECTORS -MATH
  1. Let hat(a), hat(b) be two unit vectors and theta be the angle between...

    Text Solution

    |

  2. Let hat(a), hat(b) be two unit vectors and theta be the angle between...

    Text Solution

    |

  3. What is a vector of unit length orthogonal to both the vectors hat(...

    Text Solution

    |

  4. If veca, vecb, vecc are the position vectors of the vertices of an equ...

    Text Solution

    |

  5. What is the area of the parallelogram having diagonals 3hat(i) + hat(j...

    Text Solution

    |

  6. Let vec(a) = hat(i) + hat(j), vec(b) = 3 hat(i) + 4 hat(k) and vec (b)...

    Text Solution

    |

  7. Let vec(a) = hat(i) + hat(j), vec(b) = 3 hat(i) + 4 hat(k) and vec (b)...

    Text Solution

    |

  8. Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec...

    Text Solution

    |

  9. Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec...

    Text Solution

    |

  10. If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(A...

    Text Solution

    |

  11. Find the moment of vec F about point (2, -1, 3), where force vec ...

    Text Solution

    |

  12. If vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 2 hat(i) + 3 hat( j) + 2 hat...

    Text Solution

    |

  13. Let A B C D be a p[arallelogram whose diagonals intersect at P and ...

    Text Solution

    |

  14. ABCD is a quadrilateral whose diagonals are AC and BD. Which one of th...

    Text Solution

    |

  15. If vec(a)xx vec(b) = vec(c) and vec(b) xx vec(c) = vec(a), then which ...

    Text Solution

    |

  16. If vec(a) = 2 hat(i) + 3 hat (j) + 4 hat(k) and vec(b) = 3 hat(i) + 2 ...

    Text Solution

    |

  17. If alpha, beta and lambda are the angles which the vector vec(OP) (O...

    Text Solution

    |

  18. Let vec(alpha)=hat(i) +2 hat(j) - hat(k), vec(beta) = 2 hat(i) - hat(j...

    Text Solution

    |

  19. If hata and hatb are two unit vectors, then the vector (hata + hatb) x...

    Text Solution

    |

  20. A force vec(F) = hat(i) + 3 hat(j) + 2 hat(k) acts on a particle to di...

    Text Solution

    |