Home
Class 12
MATHS
Let vec(a) = hat(i) + hat(j), vec(b) = 3...

Let `vec(a) = hat(i) + hat(j), vec(b) = 3 hat(i) + 4 hat(k) and vec (b) = vec(c) + vec(d)`, where `vec(c)` is parallel to `vec(a) and vec(d) ` is perpendicular to `vec(a)`.
What is `vec(c)` equal to ?

A

`(3(hat(i)+hat(j)))/(2)`

B

`(2(hat(i)+hat(j)))/(3)`

C

`((hat(i)+hat(j)))/(2)`

D

`((hat(i)+hat(j)))/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the vector \(\vec{c}\) given the conditions that \(\vec{c}\) is parallel to \(\vec{a}\) and \(\vec{d}\) is perpendicular to \(\vec{a}\). ### Step 1: Define the vectors We have: \[ \vec{a} = \hat{i} + \hat{j} \] \[ \vec{b} = 3\hat{i} + 4\hat{k} \] We also know that: \[ \vec{b} = \vec{c} + \vec{d} \] ### Step 2: Use the dot product Since \(\vec{c}\) is parallel to \(\vec{a}\), we can express \(\vec{c}\) as: \[ \vec{c} = k\vec{a} = k(\hat{i} + \hat{j}) \quad \text{for some scalar } k \] ### Step 3: Find \(\vec{d}\) From the equation \(\vec{b} = \vec{c} + \vec{d}\), we can rearrange it to find \(\vec{d}\): \[ \vec{d} = \vec{b} - \vec{c} = (3\hat{i} + 4\hat{k}) - k(\hat{i} + \hat{j}) = (3 - k)\hat{i} - k\hat{j} + 4\hat{k} \] ### Step 4: Use the perpendicular condition Since \(\vec{d}\) is perpendicular to \(\vec{a}\), we can use the dot product: \[ \vec{a} \cdot \vec{d} = 0 \] Calculating the dot product: \[ (\hat{i} + \hat{j}) \cdot ((3 - k)\hat{i} - k\hat{j} + 4\hat{k}) = (1)(3 - k) + (1)(-k) + (0)(4) = 3 - k - k = 3 - 2k \] Setting this equal to zero gives: \[ 3 - 2k = 0 \implies 2k = 3 \implies k = \frac{3}{2} \] ### Step 5: Calculate \(\vec{c}\) Now substituting \(k\) back into the equation for \(\vec{c}\): \[ \vec{c} = k(\hat{i} + \hat{j}) = \frac{3}{2}(\hat{i} + \hat{j}) = \frac{3}{2}\hat{i} + \frac{3}{2}\hat{j} \] ### Final Answer Thus, the vector \(\vec{c}\) is: \[ \vec{c} = \frac{3}{2}\hat{i} + \frac{3}{2}\hat{j} \]

To solve the problem step by step, we need to find the vector \(\vec{c}\) given the conditions that \(\vec{c}\) is parallel to \(\vec{a}\) and \(\vec{d}\) is perpendicular to \(\vec{a}\). ### Step 1: Define the vectors We have: \[ \vec{a} = \hat{i} + \hat{j} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

Consider the following for the next two items that follows Let vec(a) = hat(i) + hat(j), vec(b)= 3hat(i) + 4hat(k) and vec(b) =vec(c ) +vec(d) , where vec(c ) is parallel to vec(a) and vec(d) is perpendicular to vec(a) What is vec(c ) equal to ?

If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j) are three vectors such that vec(a)+t vec(b) is perpendicular to vec(c) , then what is t equal to ?

Let vec(a) = (hat(i) + 4 hat(j) + 2 hat(k)), vec(b)= ( 3 hat(i)- 2 hat(j)+7 hat(k)) and vec(c) = ( 2 hat(i)- hat(j) + 4 hat(k))." find a vector" vec(d)" which is perpendicular to both "vec(a) and vec(b)" such that " vec(c). vec(d)= 18.

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a) = (hat(i) - 2 hat(j)+ 3 hat(k)) and vec(b) = (2 hat(i) + 3 hat(j)- 5 hat(k)) then find (vec(a) xx vec(b)) and " verify that " (vec(a) xx vec(b)) is perpendicular to each one of vec(a) and vec(b) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

NDA PREVIOUS YEARS-VECTORS -MATH
  1. If veca, vecb, vecc are the position vectors of the vertices of an equ...

    Text Solution

    |

  2. What is the area of the parallelogram having diagonals 3hat(i) + hat(j...

    Text Solution

    |

  3. Let vec(a) = hat(i) + hat(j), vec(b) = 3 hat(i) + 4 hat(k) and vec (b)...

    Text Solution

    |

  4. Let vec(a) = hat(i) + hat(j), vec(b) = 3 hat(i) + 4 hat(k) and vec (b)...

    Text Solution

    |

  5. Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec...

    Text Solution

    |

  6. Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec...

    Text Solution

    |

  7. If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(A...

    Text Solution

    |

  8. Find the moment of vec F about point (2, -1, 3), where force vec ...

    Text Solution

    |

  9. If vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 2 hat(i) + 3 hat( j) + 2 hat...

    Text Solution

    |

  10. Let A B C D be a p[arallelogram whose diagonals intersect at P and ...

    Text Solution

    |

  11. ABCD is a quadrilateral whose diagonals are AC and BD. Which one of th...

    Text Solution

    |

  12. If vec(a)xx vec(b) = vec(c) and vec(b) xx vec(c) = vec(a), then which ...

    Text Solution

    |

  13. If vec(a) = 2 hat(i) + 3 hat (j) + 4 hat(k) and vec(b) = 3 hat(i) + 2 ...

    Text Solution

    |

  14. If alpha, beta and lambda are the angles which the vector vec(OP) (O...

    Text Solution

    |

  15. Let vec(alpha)=hat(i) +2 hat(j) - hat(k), vec(beta) = 2 hat(i) - hat(j...

    Text Solution

    |

  16. If hata and hatb are two unit vectors, then the vector (hata + hatb) x...

    Text Solution

    |

  17. A force vec(F) = hat(i) + 3 hat(j) + 2 hat(k) acts on a particle to di...

    Text Solution

    |

  18. For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |...

    Text Solution

    |

  19. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  20. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |