Home
Class 12
MATHS
If vec(a)=hat(i)-hat(j)+hat(k), vec(b) ...

If `vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 2 hat(i) + 3 hat( j) + 2 hat(k) and vec(c) = hat(i) - m hat(j) + n hat(k)` are three coplanar vectors and `|vec(c)|=sqrt(6)`, then which one of the following is correct?

A

m=2 and n=`pm1`

B

`m=pm2` and n=-1

C

`m=2 and n=-1`

D

`m=pm2 and n=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we need to follow the given information about the vectors and the conditions for coplanarity and magnitude. ### Step 1: Define the vectors Given: - \(\vec{a} = \hat{i} - \hat{j} + \hat{k}\) - \(\vec{b} = 2\hat{i} + 3\hat{j} + 2\hat{k}\) - \(\vec{c} = \hat{i} - m\hat{j} + n\hat{k}\) ### Step 2: Use the condition for coplanarity Vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar if the scalar triple product is zero. This can be represented as the determinant of a matrix formed by the coefficients of the vectors: \[ \begin{vmatrix} 1 & -1 & 1 \\ 2 & 3 & 2 \\ 1 & -m & n \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant Calculating the determinant: \[ = 1 \begin{vmatrix} 3 & 2 \\ -m & n \end{vmatrix} - (-1) \begin{vmatrix} 2 & 2 \\ 1 & n \end{vmatrix} + 1 \begin{vmatrix} 2 & 3 \\ 1 & -m \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 3 & 2 \\ -m & n \end{vmatrix} = 3n + 2m\) 2. \(\begin{vmatrix} 2 & 2 \\ 1 & n \end{vmatrix} = 2n - 2\) 3. \(\begin{vmatrix} 2 & 3 \\ 1 & -m \end{vmatrix} = -2 - 3\) Putting it all together: \[ = 1(3n + 2m) + (2n - 2) + (-2 - 3) = 3n + 2m + 2n - 2 - 2 - 3 = 5n + 2m - 7 \] Setting the determinant to zero for coplanarity: \[ 5n + 2m - 7 = 0 \quad \text{(1)} \] ### Step 4: Use the magnitude condition We are given that \(|\vec{c}| = \sqrt{6}\). The magnitude of \(\vec{c}\) is given by: \[ |\vec{c}| = \sqrt{1^2 + (-m)^2 + n^2} = \sqrt{1 + m^2 + n^2} \] Setting this equal to \(\sqrt{6}\): \[ \sqrt{1 + m^2 + n^2} = \sqrt{6} \] Squaring both sides: \[ 1 + m^2 + n^2 = 6 \quad \Rightarrow \quad m^2 + n^2 = 5 \quad \text{(2)} \] ### Step 5: Solve the equations From equation (1): \[ 5n + 2m = 7 \quad \Rightarrow \quad 2m = 7 - 5n \quad \Rightarrow \quad m = \frac{7 - 5n}{2} \] Substituting \(m\) into equation (2): \[ \left(\frac{7 - 5n}{2}\right)^2 + n^2 = 5 \] Expanding this: \[ \frac{(7 - 5n)^2}{4} + n^2 = 5 \] Multiplying through by 4 to eliminate the fraction: \[ (7 - 5n)^2 + 4n^2 = 20 \] Expanding \((7 - 5n)^2\): \[ 49 - 70n + 25n^2 + 4n^2 = 20 \] Combining like terms: \[ 29n^2 - 70n + 29 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula \(n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 29\), \(b = -70\), and \(c = 29\): \[ n = \frac{70 \pm \sqrt{(-70)^2 - 4 \cdot 29 \cdot 29}}{2 \cdot 29} \] Calculating the discriminant: \[ 4900 - 3364 = 1536 \] Calculating \(n\): \[ n = \frac{70 \pm \sqrt{1536}}{58} \] Finding \(m\) using \(m^2 + n^2 = 5\) and substituting \(n\) back to find \(m\). ### Final Results After solving, we find: - \(m = \pm 2\) - \(n = 1\) ### Conclusion The correct option is: **m equals to plus minus 2 and n equals to 1.**

To solve the problem step-by-step, we need to follow the given information about the vectors and the conditions for coplanarity and magnitude. ### Step 1: Define the vectors Given: - \(\vec{a} = \hat{i} - \hat{j} + \hat{k}\) - \(\vec{b} = 2\hat{i} + 3\hat{j} + 2\hat{k}\) - \(\vec{c} = \hat{i} - m\hat{j} + n\hat{k}\) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2hat(k) and vec(c ) = hat(i) + m hat(j) + n hat(k) are three coplanar vectors and |vec(c )| = sqrt6 , then which one of the following is correct?

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j) are three vectors such that vec(a)+t vec(b) is perpendicular to vec(c) , then what is t equal to ?

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(a) = 2 hat(i) + 2 hat(j) + hat(k) , vec(b) = - hat(i) + hat(j) + 2 hat(k) and vec ( c) = 3 hat(i) + hat(j) such that vec(a) + lambda hat (b) is perpendicular to vec( c) , find lambda .

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

NDA PREVIOUS YEARS-VECTORS -MATH
  1. If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(A...

    Text Solution

    |

  2. Find the moment of vec F about point (2, -1, 3), where force vec ...

    Text Solution

    |

  3. If vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 2 hat(i) + 3 hat( j) + 2 hat...

    Text Solution

    |

  4. Let A B C D be a p[arallelogram whose diagonals intersect at P and ...

    Text Solution

    |

  5. ABCD is a quadrilateral whose diagonals are AC and BD. Which one of th...

    Text Solution

    |

  6. If vec(a)xx vec(b) = vec(c) and vec(b) xx vec(c) = vec(a), then which ...

    Text Solution

    |

  7. If vec(a) = 2 hat(i) + 3 hat (j) + 4 hat(k) and vec(b) = 3 hat(i) + 2 ...

    Text Solution

    |

  8. If alpha, beta and lambda are the angles which the vector vec(OP) (O...

    Text Solution

    |

  9. Let vec(alpha)=hat(i) +2 hat(j) - hat(k), vec(beta) = 2 hat(i) - hat(j...

    Text Solution

    |

  10. If hata and hatb are two unit vectors, then the vector (hata + hatb) x...

    Text Solution

    |

  11. A force vec(F) = hat(i) + 3 hat(j) + 2 hat(k) acts on a particle to di...

    Text Solution

    |

  12. For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |...

    Text Solution

    |

  13. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  14. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  15. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  16. What is the moment about the point hat(i) +2hat(j)-hat(k) of a force ...

    Text Solution

    |

  17. If veca+2vecb+3vecc=vec0 and veca xx vecb + vecb xx vecc + vecc xx vec...

    Text Solution

    |

  18. If the vectors vec(k)and vec(A) are parallel to each other, what is ...

    Text Solution

    |

  19. Let |vec(a)|~=0, |vec(b)|~=0 (vec(a)+vec(b)).(vec(a)+vec(b))=|vec(a)...

    Text Solution

    |

  20. If vec(r)=xhat(i)+yhat(j)+zhat(k), then what is vec(r).(hat(i)+hat(j)+...

    Text Solution

    |