Home
Class 12
MATHS
Let vec(alpha)=hat(i) +2 hat(j) - hat(k)...

Let `vec(alpha)=hat(i) +2 hat(j) - hat(k), vec(beta) = 2 hat(i) - hat(j) + 3 hat(k) and vec(lambda)=2hat(i) + hat(j) + 6 hat(k)` be three vectors. If `vec(alpha) and vec(beta)` are both perpendicular to the vector `vec(delta) and vec(delta).vec(lambda)=10`, then what is the magnitude of `vec(delta)`?

A

`sqrt(3) ` units

B

`2sqrt(3)` units

C

`(sqrt(3))/(2)` unit

D

`(1)/(sqrt(3))` unit

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Define the Given Vectors We have three vectors: - \(\vec{\alpha} = \hat{i} + 2\hat{j} - \hat{k}\) - \(\vec{\beta} = 2\hat{i} - \hat{j} + 3\hat{k}\) - \(\vec{\lambda} = 2\hat{i} + \hat{j} + 6\hat{k}\) ### Step 2: Assume the Form of \(\vec{\delta}\) Let \(\vec{\delta} = a\hat{i} + b\hat{j} + c\hat{k}\). ### Step 3: Use the Perpendicular Condition Since \(\vec{\alpha}\) is perpendicular to \(\vec{\delta}\), we have: \[ \vec{\delta} \cdot \vec{\alpha} = 0 \] Calculating this dot product: \[ (a\hat{i} + b\hat{j} + c\hat{k}) \cdot (\hat{i} + 2\hat{j} - \hat{k}) = a + 2b - c = 0 \quad \text{(Equation 1)} \] ### Step 4: Apply the Second Perpendicular Condition Since \(\vec{\beta}\) is also perpendicular to \(\vec{\delta}\), we have: \[ \vec{\delta} \cdot \vec{\beta} = 0 \] Calculating this dot product: \[ (a\hat{i} + b\hat{j} + c\hat{k}) \cdot (2\hat{i} - \hat{j} + 3\hat{k}) = 2a - b + 3c = 0 \quad \text{(Equation 2)} \] ### Step 5: Use the Given Dot Product Condition We know that: \[ \vec{\delta} \cdot \vec{\lambda} = 10 \] Calculating this dot product: \[ (a\hat{i} + b\hat{j} + c\hat{k}) \cdot (2\hat{i} + \hat{j} + 6\hat{k}) = 2a + b + 6c = 10 \quad \text{(Equation 3)} \] ### Step 6: Solve the System of Equations Now we have a system of three equations: 1. \(a + 2b - c = 0\) (Equation 1) 2. \(2a - b + 3c = 0\) (Equation 2) 3. \(2a + b + 6c = 10\) (Equation 3) #### From Equation 1: Rearranging gives: \[ c = a + 2b \quad \text{(Equation 4)} \] #### Substitute Equation 4 into Equations 2 and 3: Substituting \(c\) in Equation 2: \[ 2a - b + 3(a + 2b) = 0 \] \[ 2a - b + 3a + 6b = 0 \implies 5a + 5b = 0 \implies a + b = 0 \implies b = -a \quad \text{(Equation 5)} \] Substituting \(b\) from Equation 5 into Equation 4: \[ c = a + 2(-a) = a - 2a = -a \] Now substituting \(b\) and \(c\) into Equation 3: \[ 2a + (-a) + 6(-a) = 10 \] \[ 2a - a - 6a = 10 \implies -5a = 10 \implies a = -2 \] Now substituting \(a\) back to find \(b\) and \(c\): \[ b = -(-2) = 2 \] \[ c = -(-2) = 2 \] ### Step 7: Write \(\vec{\delta}\) Thus, we have: \[ \vec{\delta} = -2\hat{i} + 2\hat{j} + 2\hat{k} \] ### Step 8: Calculate the Magnitude of \(\vec{\delta}\) The magnitude of \(\vec{\delta}\) is given by: \[ |\vec{\delta}| = \sqrt{(-2)^2 + 2^2 + 2^2} = \sqrt{4 + 4 + 4} = \sqrt{12} = 2\sqrt{3} \] ### Final Answer The magnitude of \(\vec{\delta}\) is \(2\sqrt{3}\). ---

To solve the problem, we will follow these steps: ### Step 1: Define the Given Vectors We have three vectors: - \(\vec{\alpha} = \hat{i} + 2\hat{j} - \hat{k}\) - \(\vec{\beta} = 2\hat{i} - \hat{j} + 3\hat{k}\) - \(\vec{\lambda} = 2\hat{i} + \hat{j} + 6\hat{k}\) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 2 hat(i) + 3 hat( j) + 2 hat(k) and vec(c) = hat(i) - m hat(j) + n hat(k) are three coplanar vectors and |vec(c)|=sqrt(6) , then which one of the following is correct?

If vec(a) = 2 hat(i) + 2 hat(j) + hat(k) , vec(b) = - hat(i) + hat(j) + 2 hat(k) and vec ( c) = 3 hat(i) + hat(j) such that vec(a) + lambda hat (b) is perpendicular to vec( c) , find lambda .

If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j) are three vectors such that vec(a)+t vec(b) is perpendicular to vec(c) , then what is t equal to ?

NDA PREVIOUS YEARS-VECTORS -MATH
  1. If vec(a) = 2 hat(i) + 3 hat (j) + 4 hat(k) and vec(b) = 3 hat(i) + 2 ...

    Text Solution

    |

  2. If alpha, beta and lambda are the angles which the vector vec(OP) (O...

    Text Solution

    |

  3. Let vec(alpha)=hat(i) +2 hat(j) - hat(k), vec(beta) = 2 hat(i) - hat(j...

    Text Solution

    |

  4. If hata and hatb are two unit vectors, then the vector (hata + hatb) x...

    Text Solution

    |

  5. A force vec(F) = hat(i) + 3 hat(j) + 2 hat(k) acts on a particle to di...

    Text Solution

    |

  6. For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |...

    Text Solution

    |

  7. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  8. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  9. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  10. What is the moment about the point hat(i) +2hat(j)-hat(k) of a force ...

    Text Solution

    |

  11. If veca+2vecb+3vecc=vec0 and veca xx vecb + vecb xx vecc + vecc xx vec...

    Text Solution

    |

  12. If the vectors vec(k)and vec(A) are parallel to each other, what is ...

    Text Solution

    |

  13. Let |vec(a)|~=0, |vec(b)|~=0 (vec(a)+vec(b)).(vec(a)+vec(b))=|vec(a)...

    Text Solution

    |

  14. If vec(r)=xhat(i)+yhat(j)+zhat(k), then what is vec(r).(hat(i)+hat(j)+...

    Text Solution

    |

  15. A unit vector perpendicular to each of the vectors 2hat(i)-hat(j)+hat(...

    Text Solution

    |

  16. If |vec(a)|=3, |vec(b)|=4 and |vec(a)-vec(b)|=5, then what is the valu...

    Text Solution

    |

  17. Let vec(a), vec(b) and vec(c) be three mutually perpendicular vectors ...

    Text Solution

    |

  18. What is (vec(a)-vec(b))xx(vec(a)+vec(b)) equal to?

    Text Solution

    |

  19. A spacecraft at hat(i)+2hat(j)+3hat(k) is subjected to a force lambda ...

    Text Solution

    |

  20. In a triangle ABC, if taken in order, consider the following statement...

    Text Solution

    |