Home
Class 12
MATHS
A force vec(F) = hat(i) + 3 hat(j) + 2 h...

A force `vec(F) = hat(i) + 3 hat(j) + 2 hat(k)` acts on a particle to displace it from the point A `(hat(i) + 2hat(j) - 3 hat(k))` to the point `B(3hat(i) - hat(j)+5hat(k))`. The work done by the force will be

A

5 units

B

7 units

C

9 units

D

10 units

Text Solution

AI Generated Solution

The correct Answer is:
To find the work done by the force on the particle as it moves from point A to point B, we can follow these steps: ### Step 1: Identify the Force and Points The force acting on the particle is given as: \[ \vec{F} = \hat{i} + 3\hat{j} + 2\hat{k} \] The initial point A is: \[ A = \hat{i} + 2\hat{j} - 3\hat{k} \] And the final point B is: \[ B = 3\hat{i} - \hat{j} + 5\hat{k} \] ### Step 2: Calculate the Displacement Vector \(\vec{AB}\) The displacement vector \(\vec{AB}\) can be calculated as: \[ \vec{AB} = \vec{B} - \vec{A} \] Substituting the coordinates of A and B: \[ \vec{AB} = (3\hat{i} - \hat{j} + 5\hat{k}) - (\hat{i} + 2\hat{j} - 3\hat{k}) \] Calculating this gives: \[ \vec{AB} = (3 - 1)\hat{i} + (-1 - 2)\hat{j} + (5 + 3)\hat{k} \] \[ \vec{AB} = 2\hat{i} - 3\hat{j} + 8\hat{k} \] ### Step 3: Calculate the Work Done The work done \(W\) by the force is given by the dot product of the force and the displacement: \[ W = \vec{F} \cdot \vec{AB} \] Substituting the values of \(\vec{F}\) and \(\vec{AB}\): \[ W = (\hat{i} + 3\hat{j} + 2\hat{k}) \cdot (2\hat{i} - 3\hat{j} + 8\hat{k}) \] Calculating the dot product: \[ W = (1 \cdot 2) + (3 \cdot -3) + (2 \cdot 8) \] \[ W = 2 - 9 + 16 \] \[ W = 2 + 16 - 9 = 9 \] ### Final Answer The work done by the force is: \[ \boxed{9} \text{ units} \]

To find the work done by the force on the particle as it moves from point A to point B, we can follow these steps: ### Step 1: Identify the Force and Points The force acting on the particle is given as: \[ \vec{F} = \hat{i} + 3\hat{j} + 2\hat{k} \] The initial point A is: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3hat(k)) to the point B (3hat(i) - hat(j) + 5hat(k)) . The work done by the force will be

A force (3 hat(i)+4 hat(j)) acts on a body and displaces it by (3 hat(i)+4 hat(j))m . The work done by the force is

A uniform force of (3 hat(i)+hat(j)) newton acts on a particle of mass 2 kg . Hence the particle is displaced from position (2 hat(i)+hat(j)) meter to position (4 hat(i)+ 3hat(j)-hat(k)) meter. The work done by the force on the particle is :

A force (hat(i)-2hat(j)+3hat(k)) acts on a particle of position vector (3hat(i)+2hat(j)+hat(k)) . Calculate the torque acting on the particle.

A particle moves from a point (-2hat(i) + 5hat(j)) " to" " " (4hat(j) + 3hat(k)) when a force of (4hat(i)+ 3hat(j)) N is force?

If vec F =2 hat i + 3hat j +4hat k acts on a body and displaces it by vec S =3 hat i + 2hat j + 5 hat k , then the work done by the force is

The torque of a force vec(F)=-2hat(i)+2hat(j)+3hat(k) acting on a point vec(r )=hat(i)-2hat(j)+hat(k) about origin will be

The torque of force F = -3 hat(i)+hat(j) + 5 hat(k) acting on a point r = 7 hat(i) + 3 hat(j) + hat(k) about origin will be

NDA PREVIOUS YEARS-VECTORS -MATH
  1. Let vec(alpha)=hat(i) +2 hat(j) - hat(k), vec(beta) = 2 hat(i) - hat(j...

    Text Solution

    |

  2. If hata and hatb are two unit vectors, then the vector (hata + hatb) x...

    Text Solution

    |

  3. A force vec(F) = hat(i) + 3 hat(j) + 2 hat(k) acts on a particle to di...

    Text Solution

    |

  4. For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |...

    Text Solution

    |

  5. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  6. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  7. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  8. What is the moment about the point hat(i) +2hat(j)-hat(k) of a force ...

    Text Solution

    |

  9. If veca+2vecb+3vecc=vec0 and veca xx vecb + vecb xx vecc + vecc xx vec...

    Text Solution

    |

  10. If the vectors vec(k)and vec(A) are parallel to each other, what is ...

    Text Solution

    |

  11. Let |vec(a)|~=0, |vec(b)|~=0 (vec(a)+vec(b)).(vec(a)+vec(b))=|vec(a)...

    Text Solution

    |

  12. If vec(r)=xhat(i)+yhat(j)+zhat(k), then what is vec(r).(hat(i)+hat(j)+...

    Text Solution

    |

  13. A unit vector perpendicular to each of the vectors 2hat(i)-hat(j)+hat(...

    Text Solution

    |

  14. If |vec(a)|=3, |vec(b)|=4 and |vec(a)-vec(b)|=5, then what is the valu...

    Text Solution

    |

  15. Let vec(a), vec(b) and vec(c) be three mutually perpendicular vectors ...

    Text Solution

    |

  16. What is (vec(a)-vec(b))xx(vec(a)+vec(b)) equal to?

    Text Solution

    |

  17. A spacecraft at hat(i)+2hat(j)+3hat(k) is subjected to a force lambda ...

    Text Solution

    |

  18. In a triangle ABC, if taken in order, consider the following statement...

    Text Solution

    |

  19. If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) th...

    Text Solution

    |

  20. If the position vectors of points A and B are 3hat(i)-2hat(j)+hat(k) a...

    Text Solution

    |