Home
Class 12
MATHS
For any vector vec(a), |vec(a)xx hat(i)|...

For any vector `vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |vec(a) xx hat(k)|^(2)` is equal to

A

`|vec(a)|^(2)`

B

`2|vec(a)|^(2)`

C

`3|vec(a)|^(2)`

D

`4|vec(a)|^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 \] where \(\vec{a} = x \hat{i} + y \hat{j} + z \hat{k}\). ### Step 1: Calculate \(\vec{a} \times \hat{i}\) Using the definition of the cross product, we can express \(\vec{a} \times \hat{i}\) as a determinant: \[ \vec{a} \times \hat{i} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 0 & 0 \end{vmatrix} \] Calculating this determinant, we have: \[ \vec{a} \times \hat{i} = \hat{i}(0 - 0) - \hat{j}(z - 0) + \hat{k}(0 - y) = -z \hat{j} - y \hat{k} \] Thus, \[ \vec{a} \times \hat{i} = -z \hat{j} - y \hat{k} \] ### Step 2: Calculate the magnitude squared Now, we find the magnitude squared of \(\vec{a} \times \hat{i}\): \[ |\vec{a} \times \hat{i}|^2 = (-z)^2 + (-y)^2 = z^2 + y^2 \] ### Step 3: Calculate \(\vec{a} \times \hat{j}\) Next, we calculate \(\vec{a} \times \hat{j}\): \[ \vec{a} \times \hat{j} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 0 & 1 & 0 \end{vmatrix} \] Calculating this determinant, we have: \[ \vec{a} \times \hat{j} = \hat{i}(0 - 0) - \hat{j}(0 - z) + \hat{k}(x - 0) = z \hat{i} - x \hat{k} \] Thus, \[ \vec{a} \times \hat{j} = z \hat{i} - x \hat{k} \] ### Step 4: Calculate the magnitude squared Now, we find the magnitude squared of \(\vec{a} \times \hat{j}\): \[ |\vec{a} \times \hat{j}|^2 = z^2 + (-x)^2 = z^2 + x^2 \] ### Step 5: Calculate \(\vec{a} \times \hat{k}\) Now, we calculate \(\vec{a} \times \hat{k}\): \[ \vec{a} \times \hat{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 0 & 0 & 1 \end{vmatrix} \] Calculating this determinant, we have: \[ \vec{a} \times \hat{k} = \hat{i}(y - 0) - \hat{j}(x - 0) + \hat{k}(0 - 0) = y \hat{i} - x \hat{j} \] Thus, \[ \vec{a} \times \hat{k} = y \hat{i} - x \hat{j} \] ### Step 6: Calculate the magnitude squared Now, we find the magnitude squared of \(\vec{a} \times \hat{k}\): \[ |\vec{a} \times \hat{k}|^2 = y^2 + (-x)^2 = y^2 + x^2 \] ### Step 7: Combine the results Now, we can combine all the results: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = (y^2 + z^2) + (z^2 + x^2) + (y^2 + x^2) \] This simplifies to: \[ = 2x^2 + 2y^2 + 2z^2 \] ### Step 8: Factor out the common term We can factor out the 2: \[ = 2(x^2 + y^2 + z^2) \] ### Step 9: Relate to the magnitude of \(\vec{a}\) Since \(\vec{a} = x \hat{i} + y \hat{j} + z \hat{k}\), the magnitude of \(\vec{a}\) is: \[ |\vec{a}|^2 = x^2 + y^2 + z^2 \] Thus, we can express our final result as: \[ = 2|\vec{a}|^2 \] ### Final Answer Therefore, the final answer is: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2|\vec{a}|^2 \] ---

To solve the problem, we need to find the value of the expression: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 \] where \(\vec{a} = x \hat{i} + y \hat{j} + z \hat{k}\). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

For any vector vec(a) , the value of |vec(a) xx hat(i)|^(2) + |vec(a) xx hat(j)|^(2) + |vec(a) xx hat(k)|^(2) is equal to

If vec a =2 hat i + hat j + 2 hat k , then the value of | hat i xx (vac a xx hat i)|^(2) + | hat i xx (vec a xx hat j)|^(2) + |hatk xx (vec a xx hat k)|^(2) equal to _______

Let vec(a)= hat(i) +hat(j)+2hat(k) and vec(b)= -hat(i) +2hat(j) +3hat(k) . Then the vector product (vec(a) +vec(b)) xx ((vec(a) xx ((vec(a)-vec(b)) xx vec(b))) xx vec(b)) is equal to

hat i xx(vec a xxhat i)+hat j xx(vec a xxhat j)+hat k xx(vec a xxhat k) is equal to

Let vec(A)=2hat(i)-3hat(j)+4hat(k) and vec(B)=4hat(i)+hat(j)+2hat(k) then |vec(A)xx vec(B)| is equal to

For any vector vec(alpha) , what is (vec(alpha). hat( i)) hat(i)+(vec(alpha). hat(j)) hat(j)+(vec(alpha). hat(k)) hat(k) equal to ?

If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + hat(k) and vec(c )= hat(i) + hat(j) - hat(k) , then what is vec(a) xx (vec(b)+ vec(c )) + vec(b) xx (vec(c ) + vec(a)) + vec(c ) xx (vec(a) + vec(b)) is equal to ?

Let vec(a) = hat(i) - 2hat(j) + 2hat(k) and vec(b) = 2hat(i) - hat(j) + hat(k) be two vectors. If vec(c) is a vector such that vec(b) xx vec(c) = vec(b) xx vec(a) and vec(c).vec(a) = 1 , then vec(c).vec(b) is equal to :

If vec(a) = alpha hat(i) + beta hat(j)+ 3 hat(k) , vec(b) = - beta hat(i) - alpha hat(j) - hat(k) and vec( c ) = hat(i) - 2hat(j) - hat(k) such that vec( a) . vec(b) =1 and vec( b ).vec(c ) = - 3 then (1)/(3) ((vec(a) xx vec(b)).vec( c)) is equal to "________" .

If vec(a)= 2 hat(i) - 3hat(j) - hat(k), vec(b) = hat(i) +4hat(j) -2 hat(k) , then what is (vec(a) xx vec(b)) xx (vec(a)- vec(b)) is equal to ?

NDA PREVIOUS YEARS-VECTORS -MATH
  1. If hata and hatb are two unit vectors, then the vector (hata + hatb) x...

    Text Solution

    |

  2. A force vec(F) = hat(i) + 3 hat(j) + 2 hat(k) acts on a particle to di...

    Text Solution

    |

  3. For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |...

    Text Solution

    |

  4. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  5. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  6. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  7. What is the moment about the point hat(i) +2hat(j)-hat(k) of a force ...

    Text Solution

    |

  8. If veca+2vecb+3vecc=vec0 and veca xx vecb + vecb xx vecc + vecc xx vec...

    Text Solution

    |

  9. If the vectors vec(k)and vec(A) are parallel to each other, what is ...

    Text Solution

    |

  10. Let |vec(a)|~=0, |vec(b)|~=0 (vec(a)+vec(b)).(vec(a)+vec(b))=|vec(a)...

    Text Solution

    |

  11. If vec(r)=xhat(i)+yhat(j)+zhat(k), then what is vec(r).(hat(i)+hat(j)+...

    Text Solution

    |

  12. A unit vector perpendicular to each of the vectors 2hat(i)-hat(j)+hat(...

    Text Solution

    |

  13. If |vec(a)|=3, |vec(b)|=4 and |vec(a)-vec(b)|=5, then what is the valu...

    Text Solution

    |

  14. Let vec(a), vec(b) and vec(c) be three mutually perpendicular vectors ...

    Text Solution

    |

  15. What is (vec(a)-vec(b))xx(vec(a)+vec(b)) equal to?

    Text Solution

    |

  16. A spacecraft at hat(i)+2hat(j)+3hat(k) is subjected to a force lambda ...

    Text Solution

    |

  17. In a triangle ABC, if taken in order, consider the following statement...

    Text Solution

    |

  18. If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) th...

    Text Solution

    |

  19. If the position vectors of points A and B are 3hat(i)-2hat(j)+hat(k) a...

    Text Solution

    |

  20. If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(A...

    Text Solution

    |