Home
Class 12
MATHS
If the vectors a hat(i)+hat(j)+hat(k), h...

If the vectors `a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i)+hat(j)+chat(k)(a, b, c, !=1)` are coplanar, then the value of `(1)/(1-a)+(1)/(1-b)+(1)/(1-c)` is equal to

A

0

B

1

C

a+b+c

D

abc

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \(\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}\) given that the vectors \(\hat{i} + \hat{j} + \hat{k}\), \(\hat{i} + b\hat{j} + \hat{k}\), and \(\hat{i} + \hat{j} + c\hat{k}\) are coplanar. ### Step 1: Write the vectors The three vectors can be expressed as: 1. \(\mathbf{v_1} = \hat{i} + \hat{j} + \hat{k}\) 2. \(\mathbf{v_2} = \hat{i} + b\hat{j} + \hat{k}\) 3. \(\mathbf{v_3} = \hat{i} + \hat{j} + c\hat{k}\) ### Step 2: Set up the determinant for coplanarity For the vectors to be coplanar, the determinant of the matrix formed by these vectors must be equal to zero: \[ \begin{vmatrix} 1 & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant Calculating the determinant: \[ \begin{vmatrix} 1 & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 1 \cdot (b \cdot c - 1) - 1 \cdot (1 \cdot c - 1) + 1 \cdot (1 \cdot 1 - b) \] This simplifies to: \[ bc - 1 - c + 1 + 1 - b = bc - b - c + 1 \] Setting the determinant equal to zero gives: \[ bc - b - c + 1 = 0 \] Rearranging, we find: \[ bc - b - c + 1 = 0 \implies bc - b - c = -1 \] ### Step 4: Rearranging the equation Rearranging the equation gives: \[ (b-1)(c-1) = 2 \] ### Step 5: Express the required sum Now we need to find the value of: \[ \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} \] Using the identity: \[ \frac{1}{1-x} = \frac{1}{(1-a)(1-b)(1-c)} \cdot (1-b)(1-c) + (1-a)(1-c) + (1-a)(1-b) \] ### Step 6: Substitute values From the previous steps, we can see that: \[ \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1 \] ### Conclusion Thus, the value of \(\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}\) is equal to \(1\).

To solve the problem, we need to determine the value of \(\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}\) given that the vectors \(\hat{i} + \hat{j} + \hat{k}\), \(\hat{i} + b\hat{j} + \hat{k}\), and \(\hat{i} + \hat{j} + c\hat{k}\) are coplanar. ### Step 1: Write the vectors The three vectors can be expressed as: 1. \(\mathbf{v_1} = \hat{i} + \hat{j} + \hat{k}\) 2. \(\mathbf{v_2} = \hat{i} + b\hat{j} + \hat{k}\) 3. \(\mathbf{v_3} = \hat{i} + \hat{j} + c\hat{k}\) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

If the vectors a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) and hat(i) + hat(j) + c hat(k) (a,b ne 1) are coplanar then the value of (1)/(1-a) + (1)/(1-b) + (1)/(1-c) is equal to

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

If the vectors p hat(i)+hat(j)+hat(k), hat(i)+q hat(j)+hat(k) and hat(i)+hat(j)+r hat(k) (p ne q ne r ne 1) are coplanar, then the value of pqr -(p+q+r) is :

If the vectors ahat i+hat j+hat k , hat i+bhat j+hat k and hat i+hat j+chat k(a!=b!=c!=1) are coplanar,then the value of (1)/(1-a)+(1)/(1-b)+(1)/(1-c) .

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k), (anebnec) are coplanar, then (1)/(1-a)+(1)/(1-b)+(1)/(1-c)=

If a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), and hat(i)+hat(j)+c hat(k) are coplanar vectors, then what is the value of a+b+c-abc?

If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(j)+lambda hat(k) are coplanar, then lambda is equal to

If the vectors (ahat(i)+a hat(j)+chat(k)), (hat(i)+hat(k)) and (c hat(i)+c hat(j)+b hat(k)) be coplanar, show that c^(2)=ab .

NDA PREVIOUS YEARS-VECTORS -MATH
  1. A force vec(F) = hat(i) + 3 hat(j) + 2 hat(k) acts on a particle to di...

    Text Solution

    |

  2. For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |...

    Text Solution

    |

  3. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  4. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  5. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  6. What is the moment about the point hat(i) +2hat(j)-hat(k) of a force ...

    Text Solution

    |

  7. If veca+2vecb+3vecc=vec0 and veca xx vecb + vecb xx vecc + vecc xx vec...

    Text Solution

    |

  8. If the vectors vec(k)and vec(A) are parallel to each other, what is ...

    Text Solution

    |

  9. Let |vec(a)|~=0, |vec(b)|~=0 (vec(a)+vec(b)).(vec(a)+vec(b))=|vec(a)...

    Text Solution

    |

  10. If vec(r)=xhat(i)+yhat(j)+zhat(k), then what is vec(r).(hat(i)+hat(j)+...

    Text Solution

    |

  11. A unit vector perpendicular to each of the vectors 2hat(i)-hat(j)+hat(...

    Text Solution

    |

  12. If |vec(a)|=3, |vec(b)|=4 and |vec(a)-vec(b)|=5, then what is the valu...

    Text Solution

    |

  13. Let vec(a), vec(b) and vec(c) be three mutually perpendicular vectors ...

    Text Solution

    |

  14. What is (vec(a)-vec(b))xx(vec(a)+vec(b)) equal to?

    Text Solution

    |

  15. A spacecraft at hat(i)+2hat(j)+3hat(k) is subjected to a force lambda ...

    Text Solution

    |

  16. In a triangle ABC, if taken in order, consider the following statement...

    Text Solution

    |

  17. If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) th...

    Text Solution

    |

  18. If the position vectors of points A and B are 3hat(i)-2hat(j)+hat(k) a...

    Text Solution

    |

  19. If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(A...

    Text Solution

    |

  20. The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) a...

    Text Solution

    |