Home
Class 12
MATHS
What is the moment about the point hat(i...

What is the moment about the point `hat(i) +2hat(j)-hat(k)` of a force represented by ` 3 hat(i) + hat(k)` acting through the point `2hat(i) - hat(j)+3hat(k)` ?

A

`-3hat(i)+11hat(j)+9hat(k)`

B

`3hat(i)+2hat(j)+9hat(k)`

C

`3hat(i)+4hat(j)+9hat(k)`

D

`hat(i)+hat(j)+hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the moment about the point \( \hat{i} + 2\hat{j} - \hat{k} \) of a force represented by \( 3\hat{i} + \hat{k} \) acting through the point \( 2\hat{i} - \hat{j} + 3\hat{k} \), we will follow these steps: ### Step 1: Identify the position vectors Let: - \( \mathbf{r_1} = 2\hat{i} - \hat{j} + 3\hat{k} \) (point where the force is applied) - \( \mathbf{r_2} = \hat{i} + 2\hat{j} - \hat{k} \) (point about which we are calculating the moment) - \( \mathbf{F} = 3\hat{i} + \hat{k} \) (force vector) ### Step 2: Calculate the position vector \( \mathbf{r} \) The position vector \( \mathbf{r} \) from point \( \mathbf{r_2} \) to point \( \mathbf{r_1} \) is given by: \[ \mathbf{r} = \mathbf{r_1} - \mathbf{r_2} \] Substituting the values: \[ \mathbf{r} = (2\hat{i} - \hat{j} + 3\hat{k}) - (\hat{i} + 2\hat{j} - \hat{k}) \] ### Step 3: Simplify the position vector Now, simplify the expression: \[ \mathbf{r} = (2\hat{i} - \hat{i}) + (-\hat{j} - 2\hat{j}) + (3\hat{k} + \hat{k}) \] \[ \mathbf{r} = \hat{i} - 3\hat{j} + 4\hat{k} \] ### Step 4: Calculate the moment \( \tau \) The moment \( \tau \) about point \( \mathbf{r_2} \) is given by the cross product: \[ \tau = \mathbf{r} \times \mathbf{F} \] Substituting the values: \[ \tau = (\hat{i} - 3\hat{j} + 4\hat{k}) \times (3\hat{i} + \hat{k}) \] ### Step 5: Set up the determinant for the cross product We can calculate the cross product using the determinant: \[ \tau = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 4 \\ 3 & 0 & 1 \end{vmatrix} \] ### Step 6: Calculate the determinant Calculating the determinant: \[ \tau = \hat{i} \begin{vmatrix} -3 & 4 \\ 0 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 4 \\ 3 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -3 \\ 3 & 0 \end{vmatrix} \] Calculating each of these: 1. For \( \hat{i} \): \[ \begin{vmatrix} -3 & 4 \\ 0 & 1 \end{vmatrix} = (-3)(1) - (0)(4) = -3 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 1 & 4 \\ 3 & 1 \end{vmatrix} = (1)(1) - (3)(4) = 1 - 12 = -11 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 1 & -3 \\ 3 & 0 \end{vmatrix} = (1)(0) - (3)(-3) = 0 + 9 = 9 \] ### Step 7: Combine the results Putting it all together: \[ \tau = -3\hat{i} + 11\hat{j} + 9\hat{k} \] ### Final Result Thus, the moment about the point \( \hat{i} + 2\hat{j} - \hat{k} \) is: \[ \tau = -3\hat{i} + 11\hat{j} + 9\hat{k} \]

To find the moment about the point \( \hat{i} + 2\hat{j} - \hat{k} \) of a force represented by \( 3\hat{i} + \hat{k} \) acting through the point \( 2\hat{i} - \hat{j} + 3\hat{k} \), we will follow these steps: ### Step 1: Identify the position vectors Let: - \( \mathbf{r_1} = 2\hat{i} - \hat{j} + 3\hat{k} \) (point where the force is applied) - \( \mathbf{r_2} = \hat{i} + 2\hat{j} - \hat{k} \) (point about which we are calculating the moment) - \( \mathbf{F} = 3\hat{i} + \hat{k} \) (force vector) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

What is the moment about the point hat(i) + 2hat(j) - hat(k) of a force represented by 3 hat(i) + hat(k) acting through the point 2 hat(i) - hat(j) + 3hat(k) ?

Find the moment about the point hat(i)+2hat(j)-hat(k) of a force represented by hat(i)+2hat(j)+hat(k) acting through the point 2hat(i)+3hat(j)+hat(k) .

Find the moment (torque) about the point hat(i)+2hat(j)+3hat(k) of a force represented by hat(i)+hat(j)+hat(k) acting through the point -2hat(i)+3hat(j)+hat(k) .

Find the moment about the point hat i+2hat j+3hat k of a force represented by hat i+hat j+hat k acting through the point 2hat i+3hat j+hat k

The moment of a force represented by F=hat(i)+2hat(j)+3hat(k) about the point 2hat(i)-hat(j)+hat(k) is equal to

What is the magnitude of the moment of the couple consisting of the force vec(F)=3 hat(i)+2hat(j)-hat(k) acting through the point hat(i)-hat(j)+hat(k) and -vec(F) acting through the point 2hat(i)-3hat(j)-hat(k) ?

Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the point r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)

A force vec(F) = hat(i) + 3 hat(j) + 2 hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3 hat(k)) to the point B(3hat(i) - hat(j)+5hat(k)) . The work done by the force will be

A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3hat(k)) to the point B (3hat(i) - hat(j) + 5hat(k)) . The work done by the force will be

The vector equation of the plane through the point hat(i)+2hat(j)-hat(k) and perpendicular to the line of intersection of the plane rcdot(3hat(i)-hat(j)+hat(k))=1 and rcdot(hat(i)+4hat(j)-2hat(k))=2 , is

NDA PREVIOUS YEARS-VECTORS -MATH
  1. For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |...

    Text Solution

    |

  2. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  3. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  4. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  5. What is the moment about the point hat(i) +2hat(j)-hat(k) of a force ...

    Text Solution

    |

  6. If veca+2vecb+3vecc=vec0 and veca xx vecb + vecb xx vecc + vecc xx vec...

    Text Solution

    |

  7. If the vectors vec(k)and vec(A) are parallel to each other, what is ...

    Text Solution

    |

  8. Let |vec(a)|~=0, |vec(b)|~=0 (vec(a)+vec(b)).(vec(a)+vec(b))=|vec(a)...

    Text Solution

    |

  9. If vec(r)=xhat(i)+yhat(j)+zhat(k), then what is vec(r).(hat(i)+hat(j)+...

    Text Solution

    |

  10. A unit vector perpendicular to each of the vectors 2hat(i)-hat(j)+hat(...

    Text Solution

    |

  11. If |vec(a)|=3, |vec(b)|=4 and |vec(a)-vec(b)|=5, then what is the valu...

    Text Solution

    |

  12. Let vec(a), vec(b) and vec(c) be three mutually perpendicular vectors ...

    Text Solution

    |

  13. What is (vec(a)-vec(b))xx(vec(a)+vec(b)) equal to?

    Text Solution

    |

  14. A spacecraft at hat(i)+2hat(j)+3hat(k) is subjected to a force lambda ...

    Text Solution

    |

  15. In a triangle ABC, if taken in order, consider the following statement...

    Text Solution

    |

  16. If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) th...

    Text Solution

    |

  17. If the position vectors of points A and B are 3hat(i)-2hat(j)+hat(k) a...

    Text Solution

    |

  18. If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(A...

    Text Solution

    |

  19. The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) a...

    Text Solution

    |

  20. What is the value of lambda for which the vectors 3hat(i)+4hat(j)-hat...

    Text Solution

    |