Home
Class 12
MATHS
Let vec(a), vec(b) and vec(c) be three m...

Let `vec(a), vec(b) and vec(c)` be three mutually perpendicular vectors each of unit magnitud. If `vec(A)=vec(a)+vec(b)+vec(c), vec(B)=vec(a)-vec(b)+vec(c) and vec(C)=vec(a)-vec(b)-vec(c)`, then which one of the following is correct?

A

`|vec(A)|gt|vec(B)|gt|vec(C)|`

B

`|vec(A)|=|vec(B)|!=|vec(C)|`

C

`|vec(A)|=|vec(B)|=|vec(C)|`

D

`|vec(A)|!=|vec(B)|!=|vec(C)|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the magnitudes of the vectors \(\vec{A}\), \(\vec{B}\), and \(\vec{C}\) given their definitions in terms of the mutually perpendicular unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step-by-Step Solution: 1. **Define the vectors:** \[ \vec{A} = \vec{a} + \vec{b} + \vec{c} \] \[ \vec{B} = \vec{a} - \vec{b} + \vec{c} \] \[ \vec{C} = \vec{a} - \vec{b} - \vec{c} \] 2. **Calculate the magnitude of \(\vec{A}\):** \[ |\vec{A}| = |\vec{a} + \vec{b} + \vec{c}| \] Since \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are mutually perpendicular unit vectors, we can use the formula for the magnitude of the sum of vectors: \[ |\vec{A}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2} \] Substituting the values: \[ |\vec{A}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \] 3. **Calculate the magnitude of \(\vec{B}\):** \[ |\vec{B}| = |\vec{a} - \vec{b} + \vec{c}| \] Again, using the same formula: \[ |\vec{B}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2} = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3} \] 4. **Calculate the magnitude of \(\vec{C}\):** \[ |\vec{C}| = |\vec{a} - \vec{b} - \vec{c}| \] Using the same formula: \[ |\vec{C}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2} = \sqrt{1^2 + (-1)^2 + (-1)^2} = \sqrt{3} \] 5. **Conclusion:** Since we have found that: \[ |\vec{A}| = |\vec{B}| = |\vec{C}| = \sqrt{3} \] Therefore, the correct relation is: \[ \vec{A} = \vec{B} = \vec{C} \] ### Final Answer: The correct option is that \(\vec{A} = \vec{B} = \vec{C}\).

To solve the problem, we need to determine the magnitudes of the vectors \(\vec{A}\), \(\vec{B}\), and \(\vec{C}\) given their definitions in terms of the mutually perpendicular unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step-by-Step Solution: 1. **Define the vectors:** \[ \vec{A} = \vec{a} + \vec{b} + \vec{c} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

Let vec(a).vec(b) and vec(c ) be three mutually perpendicular vectors each of unit magnitude. If vec(A) = vec(a) + vec(b) + vec(c ),  vec(B) = vec(a)- vec(b) + vec(c ) and vec(C ) = vec(a) - vec(b) - vec(c ) , then which one of the following is correct?

If vec(a)xx vec(b) = vec(c) and vec(b) xx vec(c) = vec(a) , then which one of the following is correct?

[vec(a)vec(b)vec(c )]=[vec(b)vec(c )vec(a)]=[vec(c )vec(a)vec(b)] .

If vec(a), vec(b) and vec(c ) are mutually perpendicular unit vectors and vec(a)xx vec(b)=vec(c ) , show that vec(b)=vec(c )xx vec(a) and vec(a)=vec(b)xx vec(c ) .

If vec(a),vec(b),vec(c) are mutually perpendicular vectors having magnitudes 1,2,3 respectively, then [vec(a)+vec(b)+vec(c)" "vec(b)-vec(a)vec(c)]=

If vec A, vec B and vec C are mutually perpendicular vectors, then find the value of vec A. vec (B + vec C) .

If a,b,c are three mutually perpendicular vector each of magnitude unity,then what is the magnitude of |vec a+vec b+vec c|?

If vec a and vec b and vec c are mutually perpendicular unit vectors,write the value of |vec a+vec b+vec c|

Let three vectors vec(a), vec(b) and vec(c ) be such that vec(a) xx vec(b) = vec(c), vec(b) xx vec(c) = vec(a) and |vec(a)| = 2 . Then which one of the following is not true ?

If vec a,vec b,vec c are three mutually perpendicular unit vectors,then prove that |vec a+vec b+vec c|=sqrt(3)

NDA PREVIOUS YEARS-VECTORS -MATH
  1. For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |...

    Text Solution

    |

  2. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  3. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  4. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  5. What is the moment about the point hat(i) +2hat(j)-hat(k) of a force ...

    Text Solution

    |

  6. If veca+2vecb+3vecc=vec0 and veca xx vecb + vecb xx vecc + vecc xx vec...

    Text Solution

    |

  7. If the vectors vec(k)and vec(A) are parallel to each other, what is ...

    Text Solution

    |

  8. Let |vec(a)|~=0, |vec(b)|~=0 (vec(a)+vec(b)).(vec(a)+vec(b))=|vec(a)...

    Text Solution

    |

  9. If vec(r)=xhat(i)+yhat(j)+zhat(k), then what is vec(r).(hat(i)+hat(j)+...

    Text Solution

    |

  10. A unit vector perpendicular to each of the vectors 2hat(i)-hat(j)+hat(...

    Text Solution

    |

  11. If |vec(a)|=3, |vec(b)|=4 and |vec(a)-vec(b)|=5, then what is the valu...

    Text Solution

    |

  12. Let vec(a), vec(b) and vec(c) be three mutually perpendicular vectors ...

    Text Solution

    |

  13. What is (vec(a)-vec(b))xx(vec(a)+vec(b)) equal to?

    Text Solution

    |

  14. A spacecraft at hat(i)+2hat(j)+3hat(k) is subjected to a force lambda ...

    Text Solution

    |

  15. In a triangle ABC, if taken in order, consider the following statement...

    Text Solution

    |

  16. If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) th...

    Text Solution

    |

  17. If the position vectors of points A and B are 3hat(i)-2hat(j)+hat(k) a...

    Text Solution

    |

  18. If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(A...

    Text Solution

    |

  19. The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) a...

    Text Solution

    |

  20. What is the value of lambda for which the vectors 3hat(i)+4hat(j)-hat...

    Text Solution

    |