Home
Class 12
MATHS
A spacecraft at hat(i)+2hat(j)+3hat(k) i...

A spacecraft at `hat(i)+2hat(j)+3hat(k)` is subjected to a force `lambda hat(k)` by firing a rocket. The spacecraft is subjected to a moment of magnitude

A

`lambda`

B

`sqrt(3)lambda`

C

`sqrt(5)lambda`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the outlined procedure to find the moment of the spacecraft subjected to the force. ### Step-by-Step Solution: 1. **Identify the Position Vector (r)**: The position vector of the spacecraft is given as: \[ \mathbf{r} = \hat{i} + 2\hat{j} + 3\hat{k} \] 2. **Identify the Force Vector (F)**: The force vector acting on the spacecraft is given as: \[ \mathbf{F} = \lambda \hat{k} \] 3. **Calculate the Moment (Torque) Vector (τ)**: The moment (or torque) vector is calculated using the cross product of the position vector and the force vector: \[ \mathbf{\tau} = \mathbf{r} \times \mathbf{F} \] 4. **Set Up the Determinant for the Cross Product**: We will use the determinant method to compute the cross product: \[ \mathbf{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 0 & 0 & \lambda \end{vmatrix} \] 5. **Calculate the Determinant**: Expanding the determinant along the first row: \[ \mathbf{\tau} = \hat{i} \begin{vmatrix} 2 & 3 \\ 0 & \lambda \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ 0 & \lambda \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} \] Calculating each of the 2x2 determinants: \[ = \hat{i} (2\lambda - 0) - \hat{j} (1\lambda - 0) + \hat{k} (0 - 0) \] \[ = 2\lambda \hat{i} - \lambda \hat{j} + 0 \hat{k} \] Therefore, we have: \[ \mathbf{\tau} = 2\lambda \hat{i} - \lambda \hat{j} \] 6. **Find the Magnitude of the Moment (|τ|)**: The magnitude of the moment vector is calculated as: \[ |\mathbf{\tau}| = \sqrt{(2\lambda)^2 + (-\lambda)^2} \] \[ = \sqrt{4\lambda^2 + \lambda^2} = \sqrt{5\lambda^2} = \sqrt{5} \cdot \lambda \] 7. **Final Answer**: Thus, the magnitude of the moment is: \[ |\mathbf{\tau}| = \sqrt{5} \lambda \] ### Conclusion: The final answer is: \[ \text{Magnitude of moment} = \sqrt{5} \lambda \]

To solve the problem step by step, we will follow the outlined procedure to find the moment of the spacecraft subjected to the force. ### Step-by-Step Solution: 1. **Identify the Position Vector (r)**: The position vector of the spacecraft is given as: \[ \mathbf{r} = \hat{i} + 2\hat{j} + 3\hat{k} ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

A spacecraft at hat(i) + 2hat(j) + 3hat(k) is subjected to a force lamda hat(k) by firing a rocket. The spacecraft is subjected to a moment of magnitude.

If vec(a) = 2 hat(i) + 3 hat (j) + 4 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - lambda hat(k) are perpendicular, then what is the value of lambda ?

If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(j)+lambda hat(k) are coplanar, then lambda is equal to

If two vectors 2hat(i)+3hat(j)-hat(k) and -4hat(i)-6hat(j)-lambda hat(k) are parallel to each other,then find the value of lambda

Prove that point hat i+2hat j-3hat k,2hat i-hat j+hat k and 2hat i+5hat j-hat k from a triangle in space.

What is the moment about the point hat(i) + 2hat(j) - hat(k) of a force represented by 3 hat(i) + hat(k) acting through the point 2 hat(i) - hat(j) + 3hat(k) ?

A force vec(F)=3hat(i)+4 hat(j)-3hat(k) is applied at the point P, whose position vector is vec(r) = hat(2i)-2hat(j)-3hat(k) . What is the magnitude of the moment of the force about the origin ?

Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d vec c= hat i+ hat j-2 hat k be three vectors. A vector in the plane of vec ba n d vec c , whose projection on vec a is of magnitude sqrt(2//3) , is a. 2 hat i+3 hat j-3 hat k b. 2 hat i-3 hat j+3 hat k c. -2 hat i- hat j+5 hat k d. 2 hat i+ hat j+5 hat k

NDA PREVIOUS YEARS-VECTORS -MATH
  1. For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |...

    Text Solution

    |

  2. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  3. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  4. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  5. What is the moment about the point hat(i) +2hat(j)-hat(k) of a force ...

    Text Solution

    |

  6. If veca+2vecb+3vecc=vec0 and veca xx vecb + vecb xx vecc + vecc xx vec...

    Text Solution

    |

  7. If the vectors vec(k)and vec(A) are parallel to each other, what is ...

    Text Solution

    |

  8. Let |vec(a)|~=0, |vec(b)|~=0 (vec(a)+vec(b)).(vec(a)+vec(b))=|vec(a)...

    Text Solution

    |

  9. If vec(r)=xhat(i)+yhat(j)+zhat(k), then what is vec(r).(hat(i)+hat(j)+...

    Text Solution

    |

  10. A unit vector perpendicular to each of the vectors 2hat(i)-hat(j)+hat(...

    Text Solution

    |

  11. If |vec(a)|=3, |vec(b)|=4 and |vec(a)-vec(b)|=5, then what is the valu...

    Text Solution

    |

  12. Let vec(a), vec(b) and vec(c) be three mutually perpendicular vectors ...

    Text Solution

    |

  13. What is (vec(a)-vec(b))xx(vec(a)+vec(b)) equal to?

    Text Solution

    |

  14. A spacecraft at hat(i)+2hat(j)+3hat(k) is subjected to a force lambda ...

    Text Solution

    |

  15. In a triangle ABC, if taken in order, consider the following statement...

    Text Solution

    |

  16. If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) th...

    Text Solution

    |

  17. If the position vectors of points A and B are 3hat(i)-2hat(j)+hat(k) a...

    Text Solution

    |

  18. If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(A...

    Text Solution

    |

  19. The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) a...

    Text Solution

    |

  20. What is the value of lambda for which the vectors 3hat(i)+4hat(j)-hat...

    Text Solution

    |