Home
Class 12
MATHS
If in a right-angled triangle ABC, hypot...

If in a right-angled triangle ABC, hypotenuse AC=p, then what is `vec(AB).vec(AC)+vec(BC).vec(BA)+vec(CA).vec(CB)` equal to ?

A

`p^(2)`

B

`2p^(2)`

C

`(p^(2))/(2)`

D

p

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \vec{AB} \cdot \vec{AC} + \vec{BC} \cdot \vec{BA} + \vec{CA} \cdot \vec{CB} \) in the context of a right-angled triangle ABC where AC is the hypotenuse of length \( p \). ### Step-by-Step Solution: 1. **Understand the Geometry**: In triangle ABC, angle B is the right angle, and AC is the hypotenuse. We can denote the sides as follows: - \( \vec{AB} \) is one leg, - \( \vec{BC} \) is the other leg, - \( \vec{AC} \) is the hypotenuse. 2. **Identify the Dot Products**: We need to evaluate three dot products: - \( \vec{AB} \cdot \vec{AC} \) - \( \vec{BC} \cdot \vec{BA} \) - \( \vec{CA} \cdot \vec{CB} \) 3. **Analyze \( \vec{BC} \cdot \vec{BA} \)**: Notice that \( \vec{BA} = -\vec{AB} \). Therefore, \[ \vec{BC} \cdot \vec{BA} = \vec{BC} \cdot (-\vec{AB}) = -\vec{BC} \cdot \vec{AB} \] Since \( \vec{BC} \) and \( \vec{AB} \) are perpendicular (as they are legs of the right triangle), we have: \[ \vec{BC} \cdot \vec{AB} = 0 \] Thus, \[ \vec{BC} \cdot \vec{BA} = 0 \] 4. **Rewrite the Expression**: Now we can simplify the original expression: \[ \vec{AB} \cdot \vec{AC} + 0 + \vec{CA} \cdot \vec{CB} \] This simplifies to: \[ \vec{AB} \cdot \vec{AC} + \vec{CA} \cdot \vec{CB} \] 5. **Substituting \( \vec{CA} \) and \( \vec{CB} \)**: We know that \( \vec{CA} = -\vec{AC} \) and \( \vec{CB} = -\vec{BC} \). Therefore, \[ \vec{CA} \cdot \vec{CB} = (-\vec{AC}) \cdot (-\vec{BC}) = \vec{AC} \cdot \vec{BC} \] 6. **Combine the Terms**: Now we have: \[ \vec{AB} \cdot \vec{AC} + \vec{AC} \cdot \vec{BC} \] We can factor out \( \vec{AC} \): \[ \vec{AC} \cdot (\vec{AB} + \vec{BC}) \] 7. **Using Vector Addition**: Since \( \vec{AB} + \vec{BC} = \vec{AC} \) (by the triangle law of addition), we get: \[ \vec{AC} \cdot \vec{AC} \] This is the dot product of a vector with itself, which gives us the square of its magnitude: \[ |\vec{AC}|^2 = AC^2 = p^2 \] 8. **Final Result**: Therefore, the value of the expression \( \vec{AB} \cdot \vec{AC} + \vec{BC} \cdot \vec{BA} + \vec{CA} \cdot \vec{CB} \) is: \[ p^2 \] ### Conclusion: The answer is \( p^2 \).

To solve the problem, we need to evaluate the expression \( \vec{AB} \cdot \vec{AC} + \vec{BC} \cdot \vec{BA} + \vec{CA} \cdot \vec{CB} \) in the context of a right-angled triangle ABC where AC is the hypotenuse of length \( p \). ### Step-by-Step Solution: 1. **Understand the Geometry**: In triangle ABC, angle B is the right angle, and AC is the hypotenuse. We can denote the sides as follows: - \( \vec{AB} \) is one leg, - \( \vec{BC} \) is the other leg, ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

In a right angled triangle ABC, the hypotenuse AB =p, then vec(AB).vec(AC) + vec(BC).vec(BA)+vec(CA).vec(CB) is equal to:

In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + vec(BC) .vec(BA) + vec(CA). vec(CB) equal to ?

If in a right-angled triangle ABC, the hypotenuse AB=p, then vec AB.AC+vec BC*vec BA+vec CA.vec CB is equal to 2p^(2) b.(p^(2))/(2) c.p^(2) d.none of these

In a right angled triangle ABC.the hypotenuse AB=p,then AB.AC+BC.BA+CA.CB

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

ABCDE is a pentagon prove that vec(AB)+vec(BC)+vec(CD)+vec(DE)+vec(EA)=vec0

ABCD is a parallelogram . If vec(AB)=vec(a), vec(BC)=vec(b) , then what vec(BD) equal to ?

In a triangle ABC, if taken in order, consider the following statements: 1. vec(AB)+vec(BC)+vec(CA)=vec(0) 2. vec(AB)+vec(BC)-vec(CA)=vec(0) 3. vec(AB)-vec(BC)+vec(CA)=vec(0) 4. vec(BA)-vec(BC)+vec(CA)=vec(0) How many of the above statements are correct?

NDA PREVIOUS YEARS-VECTORS -MATH
  1. For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |...

    Text Solution

    |

  2. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  3. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  4. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  5. What is the moment about the point hat(i) +2hat(j)-hat(k) of a force ...

    Text Solution

    |

  6. If veca+2vecb+3vecc=vec0 and veca xx vecb + vecb xx vecc + vecc xx vec...

    Text Solution

    |

  7. If the vectors vec(k)and vec(A) are parallel to each other, what is ...

    Text Solution

    |

  8. Let |vec(a)|~=0, |vec(b)|~=0 (vec(a)+vec(b)).(vec(a)+vec(b))=|vec(a)...

    Text Solution

    |

  9. If vec(r)=xhat(i)+yhat(j)+zhat(k), then what is vec(r).(hat(i)+hat(j)+...

    Text Solution

    |

  10. A unit vector perpendicular to each of the vectors 2hat(i)-hat(j)+hat(...

    Text Solution

    |

  11. If |vec(a)|=3, |vec(b)|=4 and |vec(a)-vec(b)|=5, then what is the valu...

    Text Solution

    |

  12. Let vec(a), vec(b) and vec(c) be three mutually perpendicular vectors ...

    Text Solution

    |

  13. What is (vec(a)-vec(b))xx(vec(a)+vec(b)) equal to?

    Text Solution

    |

  14. A spacecraft at hat(i)+2hat(j)+3hat(k) is subjected to a force lambda ...

    Text Solution

    |

  15. In a triangle ABC, if taken in order, consider the following statement...

    Text Solution

    |

  16. If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) th...

    Text Solution

    |

  17. If the position vectors of points A and B are 3hat(i)-2hat(j)+hat(k) a...

    Text Solution

    |

  18. If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(A...

    Text Solution

    |

  19. The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) a...

    Text Solution

    |

  20. What is the value of lambda for which the vectors 3hat(i)+4hat(j)-hat...

    Text Solution

    |