Home
Class 12
MATHS
The sine of the angle between vectors ve...

The sine of the angle between vectors `vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)`

A

`(1)/(sqrt(26))`

B

`(5)/(sqrt(26))`

C

`5/26`

D

`1/26`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sine of the angle between the vectors \(\vec{a} = 2\hat{i} - 6\hat{j} - 3\hat{k}\) and \(\vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}\), we can use the formula: \[ \sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}| |\vec{b}|} \] ### Step 1: Calculate the cross product \(\vec{a} \times \vec{b}\) To find the cross product, we can use the determinant of a matrix formed by the unit vectors and the components of the vectors: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -6 & -3 \\ 4 & 3 & -1 \end{vmatrix} \] Calculating this determinant, we have: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} -6 & -3 \\ 3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -3 \\ 4 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -6 \\ 4 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} -6 & -3 \\ 3 & -1 \end{vmatrix} = (-6)(-1) - (-3)(3) = 6 + 9 = 15\) 2. \(\begin{vmatrix} 2 & -3 \\ 4 & -1 \end{vmatrix} = (2)(-1) - (-3)(4) = -2 + 12 = 10\) 3. \(\begin{vmatrix} 2 & -6 \\ 4 & 3 \end{vmatrix} = (2)(3) - (-6)(4) = 6 + 24 = 30\) Putting it all together: \[ \vec{a} \times \vec{b} = 15\hat{i} - 10\hat{j} + 30\hat{k} \] ### Step 2: Calculate the magnitude of \(\vec{a} \times \vec{b}\) The magnitude is given by: \[ |\vec{a} \times \vec{b}| = \sqrt{(15)^2 + (-10)^2 + (30)^2} = \sqrt{225 + 100 + 900} = \sqrt{1225} = 35 \] ### Step 3: Calculate the magnitudes of \(\vec{a}\) and \(\vec{b}\) For \(\vec{a}\): \[ |\vec{a}| = \sqrt{(2)^2 + (-6)^2 + (-3)^2} = \sqrt{4 + 36 + 9} = \sqrt{49} = 7 \] For \(\vec{b}\): \[ |\vec{b}| = \sqrt{(4)^2 + (3)^2 + (-1)^2} = \sqrt{16 + 9 + 1} = \sqrt{26} \] ### Step 4: Substitute into the sine formula Now substituting into the sine formula: \[ \sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}| |\vec{b}|} = \frac{35}{7 \cdot \sqrt{26}} = \frac{35}{7\sqrt{26}} = \frac{5}{\sqrt{26}} \] ### Final Answer Thus, the sine of the angle between the vectors is: \[ \sin \theta = \frac{5}{\sqrt{26}} \]

To find the sine of the angle between the vectors \(\vec{a} = 2\hat{i} - 6\hat{j} - 3\hat{k}\) and \(\vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}\), we can use the formula: \[ \sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}| |\vec{b}|} \] ### Step 1: Calculate the cross product \(\vec{a} \times \vec{b}\) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY - RATIO & IDENTITY , TRIGONOMETRIC EQUATIONS

    NDA PREVIOUS YEARS|Exercise MCQ|238 Videos

Similar Questions

Explore conceptually related problems

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the angle between the vectors : vec(a)=2hat(i)-hat(j)+2hat(k) " and " vec(b)=6hat(i)+2hat(j)+3hat(k) .

If 'theta' is the angle between the vectors : vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) , find sin theta .

Find the sine of the angle between the vectors vec(a) =(2 hat(i) - hat(j) + 3 hat(k)) and vec(b) = (hat(i) + 3 hat(j) + 2 hat(k)).

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

The angle between two vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)+5hat(k) is

The angle between the two Vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)-5hat(k) will be

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .

NDA PREVIOUS YEARS-VECTORS -MATH
  1. For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |...

    Text Solution

    |

  2. If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i...

    Text Solution

    |

  3. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  4. Let p and q be the position vectors of P and Q respectively with respe...

    Text Solution

    |

  5. What is the moment about the point hat(i) +2hat(j)-hat(k) of a force ...

    Text Solution

    |

  6. If veca+2vecb+3vecc=vec0 and veca xx vecb + vecb xx vecc + vecc xx vec...

    Text Solution

    |

  7. If the vectors vec(k)and vec(A) are parallel to each other, what is ...

    Text Solution

    |

  8. Let |vec(a)|~=0, |vec(b)|~=0 (vec(a)+vec(b)).(vec(a)+vec(b))=|vec(a)...

    Text Solution

    |

  9. If vec(r)=xhat(i)+yhat(j)+zhat(k), then what is vec(r).(hat(i)+hat(j)+...

    Text Solution

    |

  10. A unit vector perpendicular to each of the vectors 2hat(i)-hat(j)+hat(...

    Text Solution

    |

  11. If |vec(a)|=3, |vec(b)|=4 and |vec(a)-vec(b)|=5, then what is the valu...

    Text Solution

    |

  12. Let vec(a), vec(b) and vec(c) be three mutually perpendicular vectors ...

    Text Solution

    |

  13. What is (vec(a)-vec(b))xx(vec(a)+vec(b)) equal to?

    Text Solution

    |

  14. A spacecraft at hat(i)+2hat(j)+3hat(k) is subjected to a force lambda ...

    Text Solution

    |

  15. In a triangle ABC, if taken in order, consider the following statement...

    Text Solution

    |

  16. If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) th...

    Text Solution

    |

  17. If the position vectors of points A and B are 3hat(i)-2hat(j)+hat(k) a...

    Text Solution

    |

  18. If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(A...

    Text Solution

    |

  19. The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) a...

    Text Solution

    |

  20. What is the value of lambda for which the vectors 3hat(i)+4hat(j)-hat...

    Text Solution

    |