Home
Class 12
MATHS
Let f be a positive function. Let I1 =...

Let f be a positive function. Let
`I_1 = int_(1-k)^(k) xf{x(1-x}dx, I_(2)=int_(1-k)^(k) f{x(1-x}dx`
where ` 2k - 1 gt 0`. Then, ` (I_1)/(I_2)` is

A

2

B

k

C

`1//2`

D

`1`

Text Solution

Verified by Experts

The correct Answer is:
C

Using `int _(0)^(a) f(x) dx = int _(0) ^(a) f (a - x ) dx`, we have
`I_1 = int_(1-k ) ^(k) (1 - x ) f {(1- x ) (1 - (1 - x ))}dx `
`rArr I_1 = int _(1-k) ^(k) (1- x ) f {x (1 - x )} dx `
`rArr I_1 = int_(1-k) ^(k) f {x( 1- x )} dx - int_(1-k ) ^(k) x f {x (1 - x) } dx `
`rArr I_1 = I_2 - I_1 rArr 2 I_1 = I_2 rArr (I_1)/(I_2) = (1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f be a positive function.If I_(1)=int_(1-k)^(k)xf[x(1-x)]dx and I_(2)=int_(1-k)^(k)f[x(1-x)]backslash dx, where 2k-1>0. Then (I_(1))/(I_(2)) is

Let f be a positive function.Let I_(1)=int_(1-k)^(k)xf([x(1-x)])dxI_(2)=int_(1-k)^(k)f[x(1-x)]dx, where 2k-1>0. Then (I_(1))/(I_(2))is 2(b) k(c)(1)/(2) (d) 1

If I_(1)=int_(1-x)^(k) x sin{x(1-x)}dx and I_(2)=int_(1-x)^(k) sin{x(1-x)}dx , then

Let f be a function defined by f(x)=4^x/(4^x+2) I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx and I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx where 2a-1gt0 then I_1:I_2 is (A) 2 (B) k (C) 1/2 (D) 1

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

Let I_(1) =int_(a)^(pi-a)xf(sinx)dx,I_(2)=int_(a)^(pi-a)f(sinx)dx , then I_(2) is equal to

For x epsilonR , and a continuous function f let I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf{x(2-x)}dx and I_(2)=int_(sin^(2)t)^(1+cos^(2)t)f{x(2-x)}dx . Then (I_(1))/(I_(2)) is

If int_(0)^(1) cot^(-1)(1-x-x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. int(0)^(10)|x(x-1)(x-2)|dx is equal to

    Text Solution

    |

  2. If int(0) ^(x) f (t) dt = x + int (x ) ^(1) t f (t) dt, then the v...

    Text Solution

    |

  3. Let f be a positive function. Let I1 = int(1-k)^(k) xf{x(1-x}dx, I(2...

    Text Solution

    |

  4. If g(x)=int(0)^(x)cos^(4) dt, then g(x+pi) equals

    Text Solution

    |

  5. If l(n)=int(0)^(pi//4) tan^(n)x dx, n in N "then" I(n+2)+I(n) equals

    Text Solution

    |

  6. If rArr I(n)=int(0)^(pi//4) tan ^(n)x dx, then for any positive integ...

    Text Solution

    |

  7. The value of int(-1)^(1) (d)/(dx) ("tan"^(1)(1)/(x))dx is

    Text Solution

    |

  8. The vlaue of the integral int(-1)^(3) ("tan"^(1)(x)/(x^(2)+1)+"tan"^...

    Text Solution

    |

  9. If =int(1)^(e) (logx)^(n) dx, "then"I(n)+nI(n-1) is equal to

    Text Solution

    |

  10. If =int(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I(n)-nI(n-1)=

    Text Solution

    |

  11. The value of int(1//n)^((an-1)//n) (sqrt(x))/(sqrt(a-x+sqrtx))dx, is

    Text Solution

    |

  12. The value of the integral int(0)^(pi//2)log |tan x cot x |dx is

    Text Solution

    |

  13. If I(1)=int(x)^(1)(1)/(1+t^(2)) dt and I(2)=int(1)^(1//x) dt "for" x g...

    Text Solution

    |

  14. For all values of , int(1//e)^(tanx) (t)/(1+t^(2))dt+int(1//e)^(tanx) ...

    Text Solution

    |

  15. The absolute value of int(10)^(19) (cosx)/(1+x^(8))dx, is

    Text Solution

    |

  16. If f(x) is an odd pefiodc function defined on the interval [T/2,T/2], ...

    Text Solution

    |

  17. If int(pi//2)^(theta) sin x dx=sin 2 theta then the of theta satisfyin...

    Text Solution

    |

  18. If f(x) is periodic function with period, T, then

    Text Solution

    |

  19. If f(n)=(1)/(n){(n+1)(n+2)(n+3)...(n+n)}^(1//n) then lim(n to oo)f(n)...

    Text Solution

    |

  20. The poins of extremum of phi(x)=int(1)^(x) e^(-t^(2)//2) (1-t^(2))dt a...

    Text Solution

    |