Home
Class 12
MATHS
The value of int(-1)^(1) (d)/(dx) ("tan"...

The value of `int_(-1)^(1) (d)/(dx) ("tan"^(1)(1)/(x))dx` is

A

`pi//2`

B

`-pi//4`

C

`-pi//2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{1} \frac{d}{dx} \left( \tan^{-1} \left( \frac{1}{x} \right) \right) dx \), we can follow these steps: ### Step 1: Understanding the Integral The integral involves the derivative of the function \( \tan^{-1} \left( \frac{1}{x} \right) \). According to the Fundamental Theorem of Calculus, the integral of a derivative over an interval gives us the difference of the values of the function at the endpoints of the interval. ### Step 2: Apply the Fundamental Theorem of Calculus We can express the integral as: \[ I = \left[ \tan^{-1} \left( \frac{1}{x} \right) \right]_{-1}^{1} \] ### Step 3: Evaluate the Function at the Limits Now we need to evaluate \( \tan^{-1} \left( \frac{1}{x} \right) \) at the limits \( x = 1 \) and \( x = -1 \). 1. For \( x = 1 \): \[ \tan^{-1} \left( \frac{1}{1} \right) = \tan^{-1}(1) = \frac{\pi}{4} \] 2. For \( x = -1 \): \[ \tan^{-1} \left( \frac{1}{-1} \right) = \tan^{-1}(-1) = -\frac{\pi}{4} \] ### Step 4: Calculate the Difference Now we substitute these values back into the expression for \( I \): \[ I = \tan^{-1} \left( \frac{1}{1} \right) - \tan^{-1} \left( \frac{1}{-1} \right) = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) \] \[ I = \frac{\pi}{4} + \frac{\pi}{4} = \frac{2\pi}{4} = \frac{\pi}{2} \] ### Final Result Thus, the value of the integral is: \[ \boxed{\frac{\pi}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Find the value of int_(-1)^(1)(d)/(dx)(tan^(-1)(1)/(x))dx

(d)/(dx)(tan^(-1)(birth x))

d/(dx)tan^-1((1-x)/(1+x))=

What is int_(-1)^(1) {d/(dx) (tan^(-1)'1/x)} dx equal to ?

d/(dx) [tan^(-1)(sqrt(x))] =

(d)/(dx)[sec(tan^(-1)x)]=

The value of int_(- sqrt(3) )^( sqrt(3)) ((d)/(dx ) ( tan^(-1) (1/ x)) + x^(3) ) dx is

What is int_(-1)^1 {d/(dx) (tan^-1 1/x)}dx equal to

(d)/(dx)[tan^(-1)((ax-b)/(bx+a))]=

(d)/(dx)[tan^(-1)((sinx)/(1+cosx))]=

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If l(n)=int(0)^(pi//4) tan^(n)x dx, n in N "then" I(n+2)+I(n) equals

    Text Solution

    |

  2. If rArr I(n)=int(0)^(pi//4) tan ^(n)x dx, then for any positive integ...

    Text Solution

    |

  3. The value of int(-1)^(1) (d)/(dx) ("tan"^(1)(1)/(x))dx is

    Text Solution

    |

  4. The vlaue of the integral int(-1)^(3) ("tan"^(1)(x)/(x^(2)+1)+"tan"^...

    Text Solution

    |

  5. If =int(1)^(e) (logx)^(n) dx, "then"I(n)+nI(n-1) is equal to

    Text Solution

    |

  6. If =int(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I(n)-nI(n-1)=

    Text Solution

    |

  7. The value of int(1//n)^((an-1)//n) (sqrt(x))/(sqrt(a-x+sqrtx))dx, is

    Text Solution

    |

  8. The value of the integral int(0)^(pi//2)log |tan x cot x |dx is

    Text Solution

    |

  9. If I(1)=int(x)^(1)(1)/(1+t^(2)) dt and I(2)=int(1)^(1//x) dt "for" x g...

    Text Solution

    |

  10. For all values of , int(1//e)^(tanx) (t)/(1+t^(2))dt+int(1//e)^(tanx) ...

    Text Solution

    |

  11. The absolute value of int(10)^(19) (cosx)/(1+x^(8))dx, is

    Text Solution

    |

  12. If f(x) is an odd pefiodc function defined on the interval [T/2,T/2], ...

    Text Solution

    |

  13. If int(pi//2)^(theta) sin x dx=sin 2 theta then the of theta satisfyin...

    Text Solution

    |

  14. If f(x) is periodic function with period, T, then

    Text Solution

    |

  15. If f(n)=(1)/(n){(n+1)(n+2)(n+3)...(n+n)}^(1//n) then lim(n to oo)f(n)...

    Text Solution

    |

  16. The poins of extremum of phi(x)=int(1)^(x) e^(-t^(2)//2) (1-t^(2))dt a...

    Text Solution

    |

  17. int(-2)^(2) min(x-[x],-x-[x])dx equals, where [x] represents greates i...

    Text Solution

    |

  18. The integral int(0)^(a) (g(x))/(f(x)+f(a-x))dx vanishes, if

    Text Solution

    |

  19. If (1)/(sqrt(a))int(1)^(a)((3)/(2)sqrt(x)+1-(1)/(sqrt(x)))dx lt4 then ...

    Text Solution

    |

  20. The expression (int(0)^(n)[x]dx)/(int(0)^(n){x}dx)a where [x] and [x] ...

    Text Solution

    |