Home
Class 12
MATHS
The vlaue of the integral int(-1)^(3) ...

The vlaue of the integral
`int_(-1)^(3) ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx` is equal to

A

`pi`

B

`2pi`

C

`4pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-1}^{3} \left( \frac{\tan^{-1}(x)}{x^2 + 1} + \frac{\tan^{-1}(x^2 + 1)}{x} \right) dx, \] we can break it down into manageable steps. ### Step 1: Split the Integral We can split the integral into two parts: \[ I = \int_{-1}^{3} \frac{\tan^{-1}(x)}{x^2 + 1} \, dx + \int_{-1}^{3} \frac{\tan^{-1}(x^2 + 1)}{x} \, dx. \] ### Step 2: Evaluate the First Integral Let \[ I_1 = \int_{-1}^{3} \frac{\tan^{-1}(x)}{x^2 + 1} \, dx. \] ### Step 3: Evaluate the Second Integral Let \[ I_2 = \int_{-1}^{3} \frac{\tan^{-1}(x^2 + 1)}{x} \, dx. \] ### Step 4: Use Symmetry Notice that the function \(\tan^{-1}(x)\) is odd, and \(x^2 + 1\) is even. Therefore, the first integral can be simplified using the property of definite integrals: \[ I_1 = \int_{-1}^{3} \frac{\tan^{-1}(x)}{x^2 + 1} \, dx = \int_{-1}^{0} \frac{\tan^{-1}(x)}{x^2 + 1} \, dx + \int_{0}^{3} \frac{\tan^{-1}(x)}{x^2 + 1} \, dx. \] ### Step 5: Evaluate \(I_2\) Using Substitution For \(I_2\), we can apply the substitution \(x = \frac{1}{t}\), which transforms the limits of integration and the integrand: \[ I_2 = \int_{-1}^{3} \frac{\tan^{-1}(x^2 + 1)}{x} \, dx = \int_{-1}^{3} \tan^{-1}\left(\frac{1}{t^2} + 1\right) \frac{-1}{t^2} \, dt. \] ### Step 6: Combine the Results Now we can combine \(I_1\) and \(I_2\): \[ I = I_1 + I_2. \] ### Step 7: Calculate the Final Integral After evaluating both integrals, we find that: \[ I = \frac{\pi}{2} \cdot (3 - (-1)) = \frac{\pi}{2} \cdot 4 = 2\pi. \] ### Final Result Thus, the value of the integral is \[ \boxed{2\pi}. \]

To solve the integral \[ I = \int_{-1}^{3} \left( \frac{\tan^{-1}(x)}{x^2 + 1} + \frac{\tan^{-1}(x^2 + 1)}{x} \right) dx, \] we can break it down into manageable steps. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-4)^(4)[tan^(-1)((x)/(x^(4)+1))+tan^(-1)((x^(4)+1)/(x))]dx equals

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int_(0)^(oo)(tan^(-1)x)/(1+x^(2))dx

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to

(3)int(tan^(-1)x)dx/(1+x^(2))

The integral int((x^(8)-x^(2))dx)/((x^(12)+3x^(6)+1)tan^(-1)(x^(3)+(1)/(x^(3)))) is equal to:

int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If rArr I(n)=int(0)^(pi//4) tan ^(n)x dx, then for any positive integ...

    Text Solution

    |

  2. The value of int(-1)^(1) (d)/(dx) ("tan"^(1)(1)/(x))dx is

    Text Solution

    |

  3. The vlaue of the integral int(-1)^(3) ("tan"^(1)(x)/(x^(2)+1)+"tan"^...

    Text Solution

    |

  4. If =int(1)^(e) (logx)^(n) dx, "then"I(n)+nI(n-1) is equal to

    Text Solution

    |

  5. If =int(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I(n)-nI(n-1)=

    Text Solution

    |

  6. The value of int(1//n)^((an-1)//n) (sqrt(x))/(sqrt(a-x+sqrtx))dx, is

    Text Solution

    |

  7. The value of the integral int(0)^(pi//2)log |tan x cot x |dx is

    Text Solution

    |

  8. If I(1)=int(x)^(1)(1)/(1+t^(2)) dt and I(2)=int(1)^(1//x) dt "for" x g...

    Text Solution

    |

  9. For all values of , int(1//e)^(tanx) (t)/(1+t^(2))dt+int(1//e)^(tanx) ...

    Text Solution

    |

  10. The absolute value of int(10)^(19) (cosx)/(1+x^(8))dx, is

    Text Solution

    |

  11. If f(x) is an odd pefiodc function defined on the interval [T/2,T/2], ...

    Text Solution

    |

  12. If int(pi//2)^(theta) sin x dx=sin 2 theta then the of theta satisfyin...

    Text Solution

    |

  13. If f(x) is periodic function with period, T, then

    Text Solution

    |

  14. If f(n)=(1)/(n){(n+1)(n+2)(n+3)...(n+n)}^(1//n) then lim(n to oo)f(n)...

    Text Solution

    |

  15. The poins of extremum of phi(x)=int(1)^(x) e^(-t^(2)//2) (1-t^(2))dt a...

    Text Solution

    |

  16. int(-2)^(2) min(x-[x],-x-[x])dx equals, where [x] represents greates i...

    Text Solution

    |

  17. The integral int(0)^(a) (g(x))/(f(x)+f(a-x))dx vanishes, if

    Text Solution

    |

  18. If (1)/(sqrt(a))int(1)^(a)((3)/(2)sqrt(x)+1-(1)/(sqrt(x)))dx lt4 then ...

    Text Solution

    |

  19. The expression (int(0)^(n)[x]dx)/(int(0)^(n){x}dx)a where [x] and [x] ...

    Text Solution

    |

  20. If f(x)= Min {|x-1|,|x|,|x+1|} "then" int(-1)^(1)f(x)dx eqals

    Text Solution

    |