Home
Class 12
MATHS
If int(pi//2)^(theta) sin x dx=sin 2 the...

If `int_(pi//2)^(theta) sin x dx=sin 2 theta` then the of `theta` satisfying `0 lt theta lt pi`, is

A

`3pi//2`

B

`pi//6`

C

`5pi//6`

D

`pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral and find the values of \(\theta\) that satisfy the equation: \[ \int_{\frac{\pi}{2}}^{\theta} \sin x \, dx = \sin(2\theta) \] ### Step 1: Evaluate the integral First, we calculate the integral \(\int \sin x \, dx\): \[ \int \sin x \, dx = -\cos x + C \] Now, we can evaluate the definite integral from \(\frac{\pi}{2}\) to \(\theta\): \[ \int_{\frac{\pi}{2}}^{\theta} \sin x \, dx = \left[-\cos x\right]_{\frac{\pi}{2}}^{\theta} = -\cos(\theta) - (-\cos(\frac{\pi}{2})) \] Since \(\cos(\frac{\pi}{2}) = 0\), we have: \[ -\cos(\theta) + 0 = -\cos(\theta) \] Thus, the integral simplifies to: \[ -\cos(\theta) = \sin(2\theta) \] ### Step 2: Rewrite the equation Now we rewrite the equation: \[ -\cos(\theta) = \sin(2\theta) \] Using the double angle identity for sine, we know that: \[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \] So we can rewrite our equation as: \[ -\cos(\theta) = 2\sin(\theta)\cos(\theta) \] ### Step 3: Rearranging the equation Rearranging gives us: \[ \cos(\theta) + 2\sin(\theta)\cos(\theta) = 0 \] Factoring out \(\cos(\theta)\): \[ \cos(\theta)(1 + 2\sin(\theta)) = 0 \] ### Step 4: Solving for \(\theta\) This gives us two cases to consider: 1. \(\cos(\theta) = 0\) 2. \(1 + 2\sin(\theta) = 0\) **Case 1:** \(\cos(\theta) = 0\) This occurs when: \[ \theta = \frac{\pi}{2} \] **Case 2:** \(1 + 2\sin(\theta) = 0\) This simplifies to: \[ \sin(\theta) = -\frac{1}{2} \] The sine function is negative in the third and fourth quadrants. The solutions in the range \(0 < \theta < \pi\) are: \[ \theta = \frac{7\pi}{6} \quad \text{(not valid since it exceeds }\pi\text{)} \] \[ \theta = \frac{5\pi}{6} \quad \text{(valid)} \] ### Step 5: Conclusion Thus, the values of \(\theta\) satisfying the original equation in the interval \(0 < \theta < \pi\) are: \[ \theta = \frac{\pi}{2} \quad \text{and} \quad \theta = \frac{5\pi}{6} \] ### Final Answer The values of \(\theta\) satisfying the equation are: \[ \theta = \frac{\pi}{2}, \frac{5\pi}{6} \]

To solve the problem, we need to evaluate the integral and find the values of \(\theta\) that satisfy the equation: \[ \int_{\frac{\pi}{2}}^{\theta} \sin x \, dx = \sin(2\theta) \] ### Step 1: Evaluate the integral ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If 3 sin 2 theta = 2 sin 3 theta and 0 lt theta lt pi , then sin theta =

int_ (0) ^ (pi / 2) ((theta) / (sin theta)) ^ (2) d theta =

Find all the value of theta satisfying 0 lt theta lt pi and "tan"^(2)theta+cot^(2) theta=2

int_(0)^( pi/2)sin^(2)theta d theta=

int_(0)^( pi/2)sin^(2)theta d theta=

int _(0) ^(pi) sin ^(2) theta cos theta d theta

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. The absolute value of int(10)^(19) (cosx)/(1+x^(8))dx, is

    Text Solution

    |

  2. If f(x) is an odd pefiodc function defined on the interval [T/2,T/2], ...

    Text Solution

    |

  3. If int(pi//2)^(theta) sin x dx=sin 2 theta then the of theta satisfyin...

    Text Solution

    |

  4. If f(x) is periodic function with period, T, then

    Text Solution

    |

  5. If f(n)=(1)/(n){(n+1)(n+2)(n+3)...(n+n)}^(1//n) then lim(n to oo)f(n)...

    Text Solution

    |

  6. The poins of extremum of phi(x)=int(1)^(x) e^(-t^(2)//2) (1-t^(2))dt a...

    Text Solution

    |

  7. int(-2)^(2) min(x-[x],-x-[x])dx equals, where [x] represents greates i...

    Text Solution

    |

  8. The integral int(0)^(a) (g(x))/(f(x)+f(a-x))dx vanishes, if

    Text Solution

    |

  9. If (1)/(sqrt(a))int(1)^(a)((3)/(2)sqrt(x)+1-(1)/(sqrt(x)))dx lt4 then ...

    Text Solution

    |

  10. The expression (int(0)^(n)[x]dx)/(int(0)^(n){x}dx)a where [x] and [x] ...

    Text Solution

    |

  11. If f(x)= Min {|x-1|,|x|,|x+1|} "then" int(-1)^(1)f(x)dx eqals

    Text Solution

    |

  12. The value of int(0)^(100) [ tan^(-1)x]dx is

    Text Solution

    |

  13. int(-1)^(10) sgn (x-[x])dx equals

    Text Solution

    |

  14. If n in N, then int(-n)^(n)(-1)^([x]) dx equals

    Text Solution

    |

  15. The value of :.int(0)^([x]) (2^(x))/(2^([x]))dx is

    Text Solution

    |

  16. If f(x) rArr int(sin theta)^("cosec" theta) f(x)dx equals

    Text Solution

    |

  17. If f(x)={{:(e^(cosx), sin x, "for" |x|le2),(,2,"otherwise"):} then int...

    Text Solution

    |

  18. The value of the integral int(e^(-1))^(e^(2)) |(log(e)x)/(x)|dx is

    Text Solution

    |

  19. Let g(x)=int(0)^(x)f(t) dt, where f is such that (1)/(2)lef(t)le1 "fo...

    Text Solution

    |

  20. Let f:(0, oo) in R and F(x) = int(0)^(x) f(t) dt. If F(x^(2))=x^(2)(1+...

    Text Solution

    |