Home
Class 12
MATHS
The value of :.int(0)^([x]) (2^(x))/(2^...

The value of `:.int_(0)^([x]) (2^(x))/(2^([x]))dx` is

A

log 2

B

`([x])/(log2)`

C

`(1)/(2)([x])/(log 2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{x} \frac{2^t}{2^{\lfloor t \rfloor}} \, dt \), we will break it down step by step. ### Step 1: Rewrite the Integral We can rewrite the integrand: \[ I = \int_{0}^{x} 2^{t - \lfloor t \rfloor} \, dt \] Here, \( t - \lfloor t \rfloor \) is the fractional part of \( t \), denoted as \( \{t\} \). ### Step 2: Identify the Behavior of the Fractional Part The fractional part \( \{t\} \) varies between 0 and 1 as \( t \) goes from any integer \( n \) to \( n+1 \). Therefore, we can break the integral into intervals: \[ I = \sum_{n=0}^{\lfloor x \rfloor - 1} \int_{n}^{n+1} 2^{t - n} \, dt + \int_{\lfloor x \rfloor}^{x} 2^{t - \lfloor x \rfloor} \, dt \] ### Step 3: Evaluate the Integral Over Each Interval For \( n = 0, 1, \ldots, \lfloor x \rfloor - 1 \): \[ \int_{n}^{n+1} 2^{t - n} \, dt = \int_{0}^{1} 2^{u} \, du \quad \text{(where \( u = t - n \))} \] This integral evaluates to: \[ \int_{0}^{1} 2^{u} \, du = \left[ \frac{2^{u}}{\ln 2} \right]_{0}^{1} = \frac{2^{1} - 2^{0}}{\ln 2} = \frac{2 - 1}{\ln 2} = \frac{1}{\ln 2} \] ### Step 4: Sum Over All Intervals There are \( \lfloor x \rfloor \) such intervals, so: \[ \sum_{n=0}^{\lfloor x \rfloor - 1} \int_{n}^{n+1} 2^{t - n} \, dt = \lfloor x \rfloor \cdot \frac{1}{\ln 2} \] ### Step 5: Evaluate the Remaining Integral Now we evaluate the last part: \[ \int_{\lfloor x \rfloor}^{x} 2^{t - \lfloor x \rfloor} \, dt = \int_{0}^{x - \lfloor x \rfloor} 2^{u} \, du \quad \text{(where \( u = t - \lfloor x \rfloor \))} \] This integral evaluates to: \[ \int_{0}^{x - \lfloor x \rfloor} 2^{u} \, du = \left[ \frac{2^{u}}{\ln 2} \right]_{0}^{x - \lfloor x \rfloor} = \frac{2^{x - \lfloor x \rfloor} - 1}{\ln 2} \] ### Step 6: Combine the Results Thus, the total integral \( I \) becomes: \[ I = \lfloor x \rfloor \cdot \frac{1}{\ln 2} + \frac{2^{x - \lfloor x \rfloor} - 1}{\ln 2} \] Combining these, we have: \[ I = \frac{\lfloor x \rfloor + (2^{x - \lfloor x \rfloor} - 1)}{\ln 2} \] ### Final Result Thus, the value of the integral is: \[ I = \frac{\lfloor x \rfloor + 2^{x - \lfloor x \rfloor} - 1}{\ln 2} \]

To solve the integral \( I = \int_{0}^{x} \frac{2^t}{2^{\lfloor t \rfloor}} \, dt \), we will break it down step by step. ### Step 1: Rewrite the Integral We can rewrite the integrand: \[ I = \int_{0}^{x} 2^{t - \lfloor t \rfloor} \, dt \] Here, \( t - \lfloor t \rfloor \) is the fractional part of \( t \), denoted as \( \{t\} \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2)xe^(x^(2))dx

The value of int _(0)^(2) (3^sqrt(x))/(sqrt(x)) dx is

The value of int_(0)^(2)|1-x|dx

The value of int_0^([x]) 2^x/2^([x])dx , where [x] denotes the greatest integer function is (A) [x]log2 (B) [x]/log2 (C) 1/2[x]/log2 (D) none of these

The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is

0.) The value of int_(0)^(infty)(a)/(x^(2)+a^(2))dx is : "

The value of int_(0)^(oo) (dx)/(a^(2)+x^(2)) is equal to

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. int(-1)^(10) sgn (x-[x])dx equals

    Text Solution

    |

  2. If n in N, then int(-n)^(n)(-1)^([x]) dx equals

    Text Solution

    |

  3. The value of :.int(0)^([x]) (2^(x))/(2^([x]))dx is

    Text Solution

    |

  4. If f(x) rArr int(sin theta)^("cosec" theta) f(x)dx equals

    Text Solution

    |

  5. If f(x)={{:(e^(cosx), sin x, "for" |x|le2),(,2,"otherwise"):} then int...

    Text Solution

    |

  6. The value of the integral int(e^(-1))^(e^(2)) |(log(e)x)/(x)|dx is

    Text Solution

    |

  7. Let g(x)=int(0)^(x)f(t) dt, where f is such that (1)/(2)lef(t)le1 "fo...

    Text Solution

    |

  8. Let f:(0, oo) in R and F(x) = int(0)^(x) f(t) dt. If F(x^(2))=x^(2)(1+...

    Text Solution

    |

  9. The integral int( -1//2)^(1//2) {[x]+ in ((1+x)/(1-x))} dx equals

    Text Solution

    |

  10. Let Tgt0 be a fixed real number. Suppose f is a cintinuous function s...

    Text Solution

    |

  11. Let f(x)=int(1)^(x) sqrt(2-t^(2))dt. Then the real roots of the equati...

    Text Solution

    |

  12. If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int(1//x)^(x) f(t)dt, (1)/(...

    Text Solution

    |

  13. If | int(a)^(b) f(x)dx|= int(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

    Text Solution

    |

  14. Let f(x) be an odd continuous function which is periodic with period 2...

    Text Solution

    |

  15. All the values of 'a' for which int(1)^(2) {a^(2)+(4-4a)x+4x^(3)}dxle1...

    Text Solution

    |

  16. Let f (x) be a function defined by f(x)=int(0)^(x) t(t^(2)-3t+2)dt, 1 ...

    Text Solution

    |

  17. If int(0)^(x){t}dt=int(0)^({x})t dt ("where" x gt0 neZ and and {*} rep...

    Text Solution

    |

  18. Let f(x)=max. {x+|x|,x-[x]} , where [x] denotes the greatest integer l...

    Text Solution

    |

  19. rArrint(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest intege...

    Text Solution

    |

  20. If rArr int(0)^(1) (e^(-t))/(t+1) dt =a, "then"int(b-1)^(b) (e^(-1))/(...

    Text Solution

    |