Home
Class 12
MATHS
The value of the integral int(e^(-1))^(e...

The value of the integral `int_(e^(-1))^(e^(2)) |(log_(e)x)/(x)|dx` is

A

`(3)/(2)`

B

`(5)/(2)`

C

3

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{e^{-1}}^{e^2} \left| \frac{\log_e x}{x} \right| dx \), we will break it down into manageable steps. ### Step 1: Analyze the Function The function we are integrating is \( f(x) = \left| \frac{\log_e x}{x} \right| \). We need to determine where this function is positive or negative within the limits of integration. ### Step 2: Identify Critical Points The logarithm function \( \log_e x \) is zero at \( x = 1 \). It is negative for \( 0 < x < 1 \) and positive for \( x > 1 \). Thus: - For \( x \in [e^{-1}, 1) \), \( \log_e x < 0 \) and hence \( f(x) = -\frac{\log_e x}{x} \). - For \( x \in (1, e^2] \), \( \log_e x > 0 \) and hence \( f(x) = \frac{\log_e x}{x} \). ### Step 3: Split the Integral We can split the integral at \( x = 1 \): \[ I = \int_{e^{-1}}^{1} -\frac{\log_e x}{x} \, dx + \int_{1}^{e^2} \frac{\log_e x}{x} \, dx \] ### Step 4: Change of Variables For both integrals, we can use the substitution \( t = \log_e x \), which gives \( dt = \frac{1}{x} dx \) or \( dx = x dt = e^t dt \). The limits change as follows: - When \( x = e^{-1} \), \( t = -1 \) - When \( x = 1 \), \( t = 0 \) - When \( x = e^2 \), \( t = 2 \) Thus, we rewrite the integrals: 1. For the first integral: \[ \int_{e^{-1}}^{1} -\frac{\log_e x}{x} \, dx = \int_{-1}^{0} -t \, dt \] 2. For the second integral: \[ \int_{1}^{e^2} \frac{\log_e x}{x} \, dx = \int_{0}^{2} t \, dt \] ### Step 5: Evaluate the Integrals Now we evaluate each integral: 1. For the first integral: \[ \int_{-1}^{0} -t \, dt = -\left[ \frac{t^2}{2} \right]_{-1}^{0} = -\left( 0 - \frac{(-1)^2}{2} \right) = \frac{1}{2} \] 2. For the second integral: \[ \int_{0}^{2} t \, dt = \left[ \frac{t^2}{2} \right]_{0}^{2} = \frac{2^2}{2} - 0 = 2 \] ### Step 6: Combine the Results Now we combine the results of the two integrals: \[ I = \frac{1}{2} + 2 = \frac{1}{2} + \frac{4}{2} = \frac{5}{2} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{5}{2}} \]

To solve the integral \( I = \int_{e^{-1}}^{e^2} \left| \frac{\log_e x}{x} \right| dx \), we will break it down into manageable steps. ### Step 1: Analyze the Function The function we are integrating is \( f(x) = \left| \frac{\log_e x}{x} \right| \). We need to determine where this function is positive or negative within the limits of integration. ### Step 2: Identify Critical Points The logarithm function \( \log_e x \) is zero at \( x = 1 \). It is negative for \( 0 < x < 1 \) and positive for \( x > 1 \). Thus: - For \( x \in [e^{-1}, 1) \), \( \log_e x < 0 \) and hence \( f(x) = -\frac{\log_e x}{x} \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int _(e ^(-1))^(e ^(2))|(ln x )/(x)|dx is:

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is

int_(e^(-1))^(e^(2))|(ln x)/(x)|dx

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int(dx)/((e^(x)+e^(-x))^2) is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If f(x) rArr int(sin theta)^("cosec" theta) f(x)dx equals

    Text Solution

    |

  2. If f(x)={{:(e^(cosx), sin x, "for" |x|le2),(,2,"otherwise"):} then int...

    Text Solution

    |

  3. The value of the integral int(e^(-1))^(e^(2)) |(log(e)x)/(x)|dx is

    Text Solution

    |

  4. Let g(x)=int(0)^(x)f(t) dt, where f is such that (1)/(2)lef(t)le1 "fo...

    Text Solution

    |

  5. Let f:(0, oo) in R and F(x) = int(0)^(x) f(t) dt. If F(x^(2))=x^(2)(1+...

    Text Solution

    |

  6. The integral int( -1//2)^(1//2) {[x]+ in ((1+x)/(1-x))} dx equals

    Text Solution

    |

  7. Let Tgt0 be a fixed real number. Suppose f is a cintinuous function s...

    Text Solution

    |

  8. Let f(x)=int(1)^(x) sqrt(2-t^(2))dt. Then the real roots of the equati...

    Text Solution

    |

  9. If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int(1//x)^(x) f(t)dt, (1)/(...

    Text Solution

    |

  10. If | int(a)^(b) f(x)dx|= int(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

    Text Solution

    |

  11. Let f(x) be an odd continuous function which is periodic with period 2...

    Text Solution

    |

  12. All the values of 'a' for which int(1)^(2) {a^(2)+(4-4a)x+4x^(3)}dxle1...

    Text Solution

    |

  13. Let f (x) be a function defined by f(x)=int(0)^(x) t(t^(2)-3t+2)dt, 1 ...

    Text Solution

    |

  14. If int(0)^(x){t}dt=int(0)^({x})t dt ("where" x gt0 neZ and and {*} rep...

    Text Solution

    |

  15. Let f(x)=max. {x+|x|,x-[x]} , where [x] denotes the greatest integer l...

    Text Solution

    |

  16. rArrint(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest intege...

    Text Solution

    |

  17. If rArr int(0)^(1) (e^(-t))/(t+1) dt =a, "then"int(b-1)^(b) (e^(-1))/(...

    Text Solution

    |

  18. If rArr int(-1)^(-4) f(x)dx= 4 and int(2)^(-4) (3-f(x))dx=7 , then the...

    Text Solution

    |

  19. For x in R and a continuous function f(x) , let I(1)int(sin^(2)t)^(1+c...

    Text Solution

    |

  20. int(1)^(4) log(e)[x]dx equals

    Text Solution

    |