Home
Class 12
MATHS
Let g(x)=int(0)^(x)f(t) dt, where f is ...

Let `g(x)=int_(0)^(x)f(t) dt`, where f is such that `(1)/(2)lef(t)le1 "for" t in [0,1] and , 0 le f(t) le(1)/(2) "for" t in [1,2]` then, g(2) satisfiwes the inquqality,

A

`-(3)/(2) le g (2) lt (1)/(2)`

B

`0 leg(2) le2`

C

`(3)/(2) le g (2) le (5)/(2)`

D

`2 lt g(2) lt4`

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`g(x)=underset(0)overset(x)intf(t)`
`rArr g(2) =overset(2)underset(0)int f(t)dt=overset(1)underset(0)int f(t)dt+overset(2)underset(1)int f(t)dt`
We know that
`m le f(x) le M "for" x in [a,b]`
`rArr m(b-a) le underset(a)overset(b) int f(x)dx le M(b-a)`
`:. (1)/(2) le f(t) le 1 "for" t in [0,1] and ,0 le f(t) le (1)/(2) "for" t in [1,2]`
` and (1)/(2) (1-0) leunderset(0)overset(1)intf(t)dt le 1(2-1)`
`rArr (1)/(2) le underset(0)overset(1)intf(t)dt le 1 and, 0 le underset(1)overset(2)int f(t)dt le(1)/(2)`
`rArr (1)/(2) le underset(0)overset(1)intf(t)dt + underset(1)overset(2)int f(t)dtle(3)/(2)`
`rArr (2)/(2)n le g(2) (3)/(2) rArr 0 le g(2) lt2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let g (x) int_(0)^(x) f(t) dy=t , where f is such that (1)/(2) le f (t) le 1 for tin [0,1] and 0 le f (t) le (1)/(2) for t in [1 ,2] . then . g (2) satis fies the inequality

Let g(x)=int_(0)^(x)f(t).dt, where f is such that (1)/(2)<=f(t)<=1 for t in[0,1] and 0<=f(t)<=(1)/(2) for t in[1,2] .Then g(2) satisfies the inequality

Let g(x)=int_(0)^(x)f(t)dt , where f is such that 1/2lef(t)le1 , for tepsilon[0,1] and 0lef(t)le1/2 , for tepsilon[1,2] . Then prove that 1/2leg(2)le3/2 .

Let g(x)=int_(0)^(x) f(t) dt , where f is continuous function in [0,3] such that 1/3 le f(t) le 1 for all t in [0,1] and 0 le f(t) le 1/2 for all tin (1,3] . The largest possible interval in which g(3) lies is:

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt, then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If f(x)={{:(e^(cosx), sin x, "for" |x|le2),(,2,"otherwise"):} then int...

    Text Solution

    |

  2. The value of the integral int(e^(-1))^(e^(2)) |(log(e)x)/(x)|dx is

    Text Solution

    |

  3. Let g(x)=int(0)^(x)f(t) dt, where f is such that (1)/(2)lef(t)le1 "fo...

    Text Solution

    |

  4. Let f:(0, oo) in R and F(x) = int(0)^(x) f(t) dt. If F(x^(2))=x^(2)(1+...

    Text Solution

    |

  5. The integral int( -1//2)^(1//2) {[x]+ in ((1+x)/(1-x))} dx equals

    Text Solution

    |

  6. Let Tgt0 be a fixed real number. Suppose f is a cintinuous function s...

    Text Solution

    |

  7. Let f(x)=int(1)^(x) sqrt(2-t^(2))dt. Then the real roots of the equati...

    Text Solution

    |

  8. If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int(1//x)^(x) f(t)dt, (1)/(...

    Text Solution

    |

  9. If | int(a)^(b) f(x)dx|= int(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

    Text Solution

    |

  10. Let f(x) be an odd continuous function which is periodic with period 2...

    Text Solution

    |

  11. All the values of 'a' for which int(1)^(2) {a^(2)+(4-4a)x+4x^(3)}dxle1...

    Text Solution

    |

  12. Let f (x) be a function defined by f(x)=int(0)^(x) t(t^(2)-3t+2)dt, 1 ...

    Text Solution

    |

  13. If int(0)^(x){t}dt=int(0)^({x})t dt ("where" x gt0 neZ and and {*} rep...

    Text Solution

    |

  14. Let f(x)=max. {x+|x|,x-[x]} , where [x] denotes the greatest integer l...

    Text Solution

    |

  15. rArrint(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest intege...

    Text Solution

    |

  16. If rArr int(0)^(1) (e^(-t))/(t+1) dt =a, "then"int(b-1)^(b) (e^(-1))/(...

    Text Solution

    |

  17. If rArr int(-1)^(-4) f(x)dx= 4 and int(2)^(-4) (3-f(x))dx=7 , then the...

    Text Solution

    |

  18. For x in R and a continuous function f(x) , let I(1)int(sin^(2)t)^(1+c...

    Text Solution

    |

  19. int(1)^(4) log(e)[x]dx equals

    Text Solution

    |

  20. If [*] denots the greatest integer function then the value of the inte...

    Text Solution

    |