Home
Class 12
MATHS
If int(0)^(x){t}dt=int(0)^({x})t dt ("wh...

If `int_(0)^(x){t}dt=int_(0)^({x})t dt ("where" x gt0 neZ and and {*}` represents fractional part function), then

A

`x in (0,1)`

B

`[x]=1`

C

`x in (1,6)-I`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

Let `x in (k,k+1)` where `k in Z`. Then,
`underset(0)overset(x)int{t}dt=underset(0)overset({x})int t dt`
`rArr underset(0)overset(k)int(t-[t])dt+underset(k)overset(x)int(t-[t]) dt=underset(k)overset({x})int t dt`
`rArr underset(r=1)overset(k)sum underset((r-1))overset(r)int(t[t])dt+underset(k)overset(x)int(t-[t])dt=(1)/(2){x}^(2)`
`rArr underset(r=1)overset(k)sum underset((r-1))overset(r)int{t-(r-1)}dt+underset(k)overset(x)int(t-k)dt=(1)/(2){x}^(2)`
`rarr (1)/(2)underset(r=1)overset(k)sum[-{t-(r-1)}^(2)]_(r-1)^(r)+[ (1)/(2)(t-k)^(2)]_(k)^(x)=(1)/(2){x}^(2)`
`rArr underset(r=1)overset(k)sum1+(x-k)^(2)={x}^(2)`
`rArr k+(x-k)^(2)={x}^(2)" " [ :. x in (k,k+1) :. {x}=x-k]`
`rArr k=0`
`:. x in (0,1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(x){t}dt=int_(0)^({x})tdt (where x>0,x!in I and represents fractional part function),then

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

Let f(x)=int_(0)^(1)|x-t|dt, then

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If f(x)=int_(0)^(x)tf(t)dt+2, then

If f(x)=int_(0)^(2)te^(-t)dt then

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. All the values of 'a' for which int(1)^(2) {a^(2)+(4-4a)x+4x^(3)}dxle1...

    Text Solution

    |

  2. Let f (x) be a function defined by f(x)=int(0)^(x) t(t^(2)-3t+2)dt, 1 ...

    Text Solution

    |

  3. If int(0)^(x){t}dt=int(0)^({x})t dt ("where" x gt0 neZ and and {*} rep...

    Text Solution

    |

  4. Let f(x)=max. {x+|x|,x-[x]} , where [x] denotes the greatest integer l...

    Text Solution

    |

  5. rArrint(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest intege...

    Text Solution

    |

  6. If rArr int(0)^(1) (e^(-t))/(t+1) dt =a, "then"int(b-1)^(b) (e^(-1))/(...

    Text Solution

    |

  7. If rArr int(-1)^(-4) f(x)dx= 4 and int(2)^(-4) (3-f(x))dx=7 , then the...

    Text Solution

    |

  8. For x in R and a continuous function f(x) , let I(1)int(sin^(2)t)^(1+c...

    Text Solution

    |

  9. int(1)^(4) log(e)[x]dx equals

    Text Solution

    |

  10. If [*] denots the greatest integer function then the value of the inte...

    Text Solution

    |

  11. The value of int(0)^(100pi) sum(r=1)^(10) tan rx dx is equal to

    Text Solution

    |

  12. If I(1)=int(0)^(pi//2) cos(sin x) dx,I(2)=int(0)^(pi//2) sin (cos x)...

    Text Solution

    |

  13. For any n in N, the value of the intergral int(0)^(pi) (sin 2nx)/(sin...

    Text Solution

    |

  14. For any n in N, int(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

    Text Solution

    |

  15. For any n in N, int(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

    Text Solution

    |

  16. If I(n) int(-pi)^(pi) (sin nx)/((1+pi^(x))sinx)dx,n=0,1,2,... then whi...

    Text Solution

    |

  17. If I(n)=int(0)^(pi//4) tan^(n)x dx, then (1)/(I(2)+I(4)),(1)/(I(3)+I...

    Text Solution

    |

  18. Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x...

    Text Solution

    |

  19. The vlaue of ((5050)int(0)^(1)(1-x^(50))^(100)dx)/(int(0)^(1) (1-x^(50...

    Text Solution

    |

  20. If f and g are continuopus fucntions on [ 0, pi] satisfying f(x) +f(p...

    Text Solution

    |