Home
Class 12
MATHS
Let f(x)=max. {x+|x|,x-[x]} , where [x] ...

Let `f(x)=max. {x+|x|,x-[x]}` , where [x] denotes the greatest integer less than or equal to x, then `int_(-2)^(2) f(x)` is equal to

A

3

B

5

C

1

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Since `x+|x|gtx-[x]"for all" x gt0` and `x+|x|=0 le x -[x] "for all" x lt0`
`:.underset(-2)overset(2)int f(x)dx=underset(-2)overset(0)int (x-[x])dx+underset(0)overset(2)int (x+x|)dx`
`rArrunderset(-2)overset(2)int f(x)dx=2xx(1)/(2)+underset(0)overset(2)int 2xx =1+4=5`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|x-1|-[x] , where [x] is the greatest integer less than or equal to x, then

If [x] denotes the greatest integer less than or equal to x then the value of int_(0)^(2)(|x-2|+[x])dx is equal to

Let [x] denote the greatest integer less than or equal to x . Then, int_(1)^(-1)[x]dx=?

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

Let f(x)=maximum{x+|x|,x-[x]}, where [x] is the greatest integer less than or equal to int_(-2)^(2)f(x)dx=

Let f(x)=(x^(2)-9x+20)/(x-[x]) where [x] denotes greatest integer less than or equal to x), then

Let [x] denotes the greatest integer less than or equal to x and f(x)= [tan^(2)x] .Then

Let [x] denote the greatest integer less than or equal to x, then the value of the integral int_(-1)^(1)(|x|-2[x])dx is equal to

Let [x] denote the greatest integer less than or equal to x. If x=(sqrt(3)+1)^(5), then [x] is equal to

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. Let f (x) be a function defined by f(x)=int(0)^(x) t(t^(2)-3t+2)dt, 1 ...

    Text Solution

    |

  2. If int(0)^(x){t}dt=int(0)^({x})t dt ("where" x gt0 neZ and and {*} rep...

    Text Solution

    |

  3. Let f(x)=max. {x+|x|,x-[x]} , where [x] denotes the greatest integer l...

    Text Solution

    |

  4. rArrint(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest intege...

    Text Solution

    |

  5. If rArr int(0)^(1) (e^(-t))/(t+1) dt =a, "then"int(b-1)^(b) (e^(-1))/(...

    Text Solution

    |

  6. If rArr int(-1)^(-4) f(x)dx= 4 and int(2)^(-4) (3-f(x))dx=7 , then the...

    Text Solution

    |

  7. For x in R and a continuous function f(x) , let I(1)int(sin^(2)t)^(1+c...

    Text Solution

    |

  8. int(1)^(4) log(e)[x]dx equals

    Text Solution

    |

  9. If [*] denots the greatest integer function then the value of the inte...

    Text Solution

    |

  10. The value of int(0)^(100pi) sum(r=1)^(10) tan rx dx is equal to

    Text Solution

    |

  11. If I(1)=int(0)^(pi//2) cos(sin x) dx,I(2)=int(0)^(pi//2) sin (cos x)...

    Text Solution

    |

  12. For any n in N, the value of the intergral int(0)^(pi) (sin 2nx)/(sin...

    Text Solution

    |

  13. For any n in N, int(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

    Text Solution

    |

  14. For any n in N, int(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

    Text Solution

    |

  15. If I(n) int(-pi)^(pi) (sin nx)/((1+pi^(x))sinx)dx,n=0,1,2,... then whi...

    Text Solution

    |

  16. If I(n)=int(0)^(pi//4) tan^(n)x dx, then (1)/(I(2)+I(4)),(1)/(I(3)+I...

    Text Solution

    |

  17. Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x...

    Text Solution

    |

  18. The vlaue of ((5050)int(0)^(1)(1-x^(50))^(100)dx)/(int(0)^(1) (1-x^(50...

    Text Solution

    |

  19. If f and g are continuopus fucntions on [ 0, pi] satisfying f(x) +f(p...

    Text Solution

    |

  20. If f(x) and g(x) are two continuous functions defined on [-a,a] then t...

    Text Solution

    |