Home
Class 12
MATHS
If I(1)=int(0)^(pi//2) cos(sin x) dx,I(2...

If `I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx` then

A

`I_(1)gtI_(3)gtI_(2)`

B

`I_(3)gtI_(1)gtI_(2)`

C

`I_(1)gtI_(2)gtI_(3)`

D

`I_(3)gtI_(2)gtI_(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare the values of the integrals \(I_1\), \(I_2\), and \(I_3\) defined as follows: \[ I_1 = \int_{0}^{\frac{\pi}{2}} \cos(\sin x) \, dx \] \[ I_2 = \int_{0}^{\frac{\pi}{2}} \sin(\cos x) \, dx \] \[ I_3 = \int_{0}^{\frac{\pi}{2}} \cos x \, dx \] ### Step 1: Evaluate \(I_3\) First, we calculate \(I_3\): \[ I_3 = \int_{0}^{\frac{\pi}{2}} \cos x \, dx \] The integral of \(\cos x\) is \(\sin x\). Thus, \[ I_3 = \left[ \sin x \right]_{0}^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin(0) = 1 - 0 = 1 \] ### Step 2: Compare \(I_1\) and \(I_2\) Next, we need to compare \(I_1\) and \(I_2\). To do this, we can use the properties of the functions involved. 1. **For \(I_1\)**: - Since \(\sin x\) is increasing on \([0, \frac{\pi}{2}]\), \(\cos(\sin x)\) is a decreasing function because \(\cos\) is decreasing in the range of \(\sin x\) from \(0\) to \(1\). - Therefore, \(\cos(\sin x) \geq \cos(1)\) for \(x \in [0, \frac{\pi}{2}]\). 2. **For \(I_2\)**: - Since \(\cos x\) is decreasing on \([0, \frac{\pi}{2}]\), \(\sin(\cos x)\) is increasing because \(\sin\) is increasing in the range of \(\cos x\) from \(1\) to \(0\). - Therefore, \(\sin(\cos x) \leq \sin(1)\) for \(x \in [0, \frac{\pi}{2}]\). ### Step 3: Establishing the Inequalities Now we can establish the inequalities: - Since \(\cos(\sin x) \geq \cos(1)\) and \(\sin(\cos x) \leq \sin(1)\), we can conclude that: \[ I_1 = \int_{0}^{\frac{\pi}{2}} \cos(\sin x) \, dx \geq \int_{0}^{\frac{\pi}{2}} \sin(1) \, dx \] - Since \(\sin(1) < 1\), we can also say that: \[ I_2 = \int_{0}^{\frac{\pi}{2}} \sin(\cos x) \, dx \leq \int_{0}^{\frac{\pi}{2}} \sin(1) \, dx \] ### Step 4: Conclusion From the evaluations and comparisons, we have: \[ I_3 = 1 > I_2 \] And since \(I_1\) is bounded below by \(\cos(1)\) and is greater than \(I_2\), we can conclude: \[ I_1 > I_2 \] Thus, we have: \[ I_3 > I_2 \quad \text{and} \quad I_1 > I_2 \] ### Final Result The order of the integrals is: \[ I_3 > I_1 > I_2 \]

To solve the problem, we need to compare the values of the integrals \(I_1\), \(I_2\), and \(I_3\) defined as follows: \[ I_1 = \int_{0}^{\frac{\pi}{2}} \cos(\sin x) \, dx \] \[ I_2 = \int_{0}^{\frac{\pi}{2}} \sin(\cos x) \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2) x sin cos x dx=?

If I_(I)=int_(0)^( pi/2)cos(sin x)dx,I_(2)=int_(0)^((pi)/(2))sin(cos x)d, and I_(3)=int_(0)^((pi)/(2))cos xdx then find the order in which the values I_(1),I_(2),I_(3), exist.

If I_(1)=int_(0)^(pi//2)"x.sin x dx" and I_(2)=int_(0)^(pi//2)"x.cos x dx" , then

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^( pi/2)|cos x-sin x|dx

int_(0)^( pi/2)(sin x)/(1+cos x)dx

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

If I_(1)=int_(0)^(pi//2)log (sin x)dx and I_(2)=int_(0)^(pi//2)log (sin 2x)dx , then

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If [*] denots the greatest integer function then the value of the inte...

    Text Solution

    |

  2. The value of int(0)^(100pi) sum(r=1)^(10) tan rx dx is equal to

    Text Solution

    |

  3. If I(1)=int(0)^(pi//2) cos(sin x) dx,I(2)=int(0)^(pi//2) sin (cos x)...

    Text Solution

    |

  4. For any n in N, the value of the intergral int(0)^(pi) (sin 2nx)/(sin...

    Text Solution

    |

  5. For any n in N, int(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

    Text Solution

    |

  6. For any n in N, int(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

    Text Solution

    |

  7. If I(n) int(-pi)^(pi) (sin nx)/((1+pi^(x))sinx)dx,n=0,1,2,... then whi...

    Text Solution

    |

  8. If I(n)=int(0)^(pi//4) tan^(n)x dx, then (1)/(I(2)+I(4)),(1)/(I(3)+I...

    Text Solution

    |

  9. Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x...

    Text Solution

    |

  10. The vlaue of ((5050)int(0)^(1)(1-x^(50))^(100)dx)/(int(0)^(1) (1-x^(50...

    Text Solution

    |

  11. If f and g are continuopus fucntions on [ 0, pi] satisfying f(x) +f(p...

    Text Solution

    |

  12. If f(x) and g(x) are two continuous functions defined on [-a,a] then t...

    Text Solution

    |

  13. Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f...

    Text Solution

    |

  14. The value of the integral int(0)^(a//2) sin 2n x cot x dx, where n i...

    Text Solution

    |

  15. The value of the integral rArr int(1)^(e^(6)) [ (log x)/(3)] dx , whe...

    Text Solution

    |

  16. For any natural number n, theb value of rArr int(0)^(n^(2))[ sqrt(x)]d...

    Text Solution

    |

  17. The value of the integral int(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    Text Solution

    |

  18. If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I(2)-I(1),I...

    Text Solution

    |

  19. Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f...

    Text Solution

    |

  20. The vlaue of int(-2)^(2) (sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [*]...

    Text Solution

    |