Home
Class 12
MATHS
For any n in N, int(0)^(pi) (sin (2n+1)x...

For any `n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx` is equal to

A

`pi`

B

0

C

`n pi`

D

`(2n+1)=pi`

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
`I_(n)= underset(0)overset(pi)int (sin (2n+1)x)/(sinx)dx`
`rArr I_(n+1)= underset(0)overset(pi)int (sin (2n+1)x)/(sinx)dx`
`:. I_(n+1)-I_(n)= underset(0)overset(pi)int (sin (2n+3)x-sin(2n+1)x)/(sinx)dx`
`rArr I_(n+1)-I_(n)= underset(0)overset(pi)int (2sin x cos (2n+2)x)/(sinx)dx`
`rArr I_(n+1)-I_(n)=(1)/(n+1)[ sin (2n+2)x]_(0)^(pi)=0`
`rArr I_(n+1)-I_(n)= I_(n-1)=...= I_(2)=I_(1)`
But, `I_(1)=underset(0)overset(pi)int(sin3x )/(sinx)dx=underset(0)overset(pi)int(3-4sin^(2)x)= 3pi-4xx(pi)/(2)=pi`
Hence, `underset(0)overset(pi)int(sin(2n+1)x)/(sinx) dx=pi`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

For any n in N, int_(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

For any n in N,int_(0)^( pi)(sin^(2)(nx))/(sin^(2)x)dx is equal to

If n=2m+1,m in N uu{0}, then int_(0)^((pi)/(2))(sin nx)/(sin x)dx is equal to (i)pi(ii)(pi)/(2)(iii)(pi)/(4) (iv) none of these

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2+cosx|sinx)dx is equal to

For any n in N , the value of the intergral int_(0)^(pi) (sin 2nx)/(sinx)dx is,

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

Given that a_(n)=int_(0)^(pi) (sin^(2){(n+1)x})/(sin2x)dx What is a_(n-1)-a_(n-4) equal to ?

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. For any n in N, the value of the intergral int(0)^(pi) (sin 2nx)/(sin...

    Text Solution

    |

  2. For any n in N, int(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

    Text Solution

    |

  3. For any n in N, int(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

    Text Solution

    |

  4. If I(n) int(-pi)^(pi) (sin nx)/((1+pi^(x))sinx)dx,n=0,1,2,... then whi...

    Text Solution

    |

  5. If I(n)=int(0)^(pi//4) tan^(n)x dx, then (1)/(I(2)+I(4)),(1)/(I(3)+I...

    Text Solution

    |

  6. Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x...

    Text Solution

    |

  7. The vlaue of ((5050)int(0)^(1)(1-x^(50))^(100)dx)/(int(0)^(1) (1-x^(50...

    Text Solution

    |

  8. If f and g are continuopus fucntions on [ 0, pi] satisfying f(x) +f(p...

    Text Solution

    |

  9. If f(x) and g(x) are two continuous functions defined on [-a,a] then t...

    Text Solution

    |

  10. Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f...

    Text Solution

    |

  11. The value of the integral int(0)^(a//2) sin 2n x cot x dx, where n i...

    Text Solution

    |

  12. The value of the integral rArr int(1)^(e^(6)) [ (log x)/(3)] dx , whe...

    Text Solution

    |

  13. For any natural number n, theb value of rArr int(0)^(n^(2))[ sqrt(x)]d...

    Text Solution

    |

  14. The value of the integral int(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    Text Solution

    |

  15. If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I(2)-I(1),I...

    Text Solution

    |

  16. Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f...

    Text Solution

    |

  17. The vlaue of int(-2)^(2) (sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [*]...

    Text Solution

    |

  18. If int(0)^(x) f(t)dt=x+int(x)^(1) t f(t) dt, then the value of f(1), i...

    Text Solution

    |

  19. If f(x)= int0^(sinx) cos^(-1)t dt +int(0)^(cosx) sin^(-1)t dt, 0 lt ...

    Text Solution

    |

  20. Let f(x) be a continuous function such that int(n)^(n+1) f(x) dx=n^(3)...

    Text Solution

    |