Home
Class 12
MATHS
If I(n)=int(0)^(pi//4) tan^(n)x dx, then...

If `I_(n)=int_(0)^(pi//4) tan^(n)x dx`, then
`(1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),...` from\

A

am A.P.

B

a G.P.

C

a H.P.

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \) and derive the relationships between \( I_n \) for different values of \( n \). ### Step-by-Step Solution: 1. **Understanding the Integral**: We start with the integral \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \). We will derive a recurrence relation for \( I_n \). 2. **Using Integration by Parts**: We can express \( I_n \) in terms of \( I_{n-2} \) using the identity: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \tan^2 x \, dx \] We know that \( \tan^2 x = \sec^2 x - 1 \), so we can rewrite the integral: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot (\sec^2 x - 1) \, dx \] This gives us: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \sec^2 x \, dx - \int_0^{\frac{\pi}{4}} \tan^{n-2} x \, dx \] 3. **Evaluating the First Integral**: The first integral can be evaluated using the substitution \( u = \tan x \), which gives \( du = \sec^2 x \, dx \). Thus, we have: \[ \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \sec^2 x \, dx = \int_0^1 u^{n-2} \, du = \frac{1}{n-1} \] 4. **Combining the Results**: Therefore, we have: \[ I_n = \frac{1}{n-1} - I_{n-2} \] 5. **Finding Relationships**: We can find \( I_{n+2} \) in terms of \( I_n \): \[ I_{n+2} = \frac{1}{n+1} - I_n \] 6. **Establishing the Recurrence**: From the above, we can establish a recurrence relation: \[ I_n + I_{n+2} = \frac{1}{n+1} \] 7. **Finding the Values**: Now, we can compute: - \( I_2 + I_4 = \frac{1}{3} \) - \( I_3 + I_5 = \frac{1}{4} \) - \( I_4 + I_6 = \frac{1}{5} \) 8. **Finding the Required Values**: We need to find: \[ \frac{1}{I_2 + I_4}, \frac{1}{I_3 + I_5}, \frac{1}{I_4 + I_6}, \ldots \] This gives us: - \( \frac{1}{I_2 + I_4} = 3 \) - \( \frac{1}{I_3 + I_5} = 4 \) - \( \frac{1}{I_4 + I_6} = 5 \) 9. **Identifying the Sequence**: The sequence \( 3, 4, 5, \ldots \) is an arithmetic progression (AP) with a common difference of 1. ### Final Answer: The sequence \( \frac{1}{I_2 + I_4}, \frac{1}{I_3 + I_5}, \frac{1}{I_4 + I_6}, \ldots \) forms an arithmetic progression.

To solve the problem, we need to evaluate the integral \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \) and derive the relationships between \( I_n \) for different values of \( n \). ### Step-by-Step Solution: 1. **Understanding the Integral**: We start with the integral \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \). We will derive a recurrence relation for \( I_n \). 2. **Using Integration by Parts**: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, show that (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),(1)/(I_(5)+I_(7)),... form an A.P. Find the common difference of this progression.

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

If I=int_(0)^(pi//4) log(1+tan x)dx , then I=

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, prove that I_(n)+I_(n-2)=(1)/(n+1)

If I_(n)=int_(0)^(pi/4)tan^(n)xdx then I_(2)+I_(4), I_(3)+I_(5), I_(4)+I_(6) ...... are in

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^((pi)/(4))sec^(n)dx then I_(10)-(8)/(9)I_(8)=

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. For any n in N, int(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

    Text Solution

    |

  2. If I(n) int(-pi)^(pi) (sin nx)/((1+pi^(x))sinx)dx,n=0,1,2,... then whi...

    Text Solution

    |

  3. If I(n)=int(0)^(pi//4) tan^(n)x dx, then (1)/(I(2)+I(4)),(1)/(I(3)+I...

    Text Solution

    |

  4. Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x...

    Text Solution

    |

  5. The vlaue of ((5050)int(0)^(1)(1-x^(50))^(100)dx)/(int(0)^(1) (1-x^(50...

    Text Solution

    |

  6. If f and g are continuopus fucntions on [ 0, pi] satisfying f(x) +f(p...

    Text Solution

    |

  7. If f(x) and g(x) are two continuous functions defined on [-a,a] then t...

    Text Solution

    |

  8. Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f...

    Text Solution

    |

  9. The value of the integral int(0)^(a//2) sin 2n x cot x dx, where n i...

    Text Solution

    |

  10. The value of the integral rArr int(1)^(e^(6)) [ (log x)/(3)] dx , whe...

    Text Solution

    |

  11. For any natural number n, theb value of rArr int(0)^(n^(2))[ sqrt(x)]d...

    Text Solution

    |

  12. The value of the integral int(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    Text Solution

    |

  13. If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I(2)-I(1),I...

    Text Solution

    |

  14. Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f...

    Text Solution

    |

  15. The vlaue of int(-2)^(2) (sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [*]...

    Text Solution

    |

  16. If int(0)^(x) f(t)dt=x+int(x)^(1) t f(t) dt, then the value of f(1), i...

    Text Solution

    |

  17. If f(x)= int0^(sinx) cos^(-1)t dt +int(0)^(cosx) sin^(-1)t dt, 0 lt ...

    Text Solution

    |

  18. Let f(x) be a continuous function such that int(n)^(n+1) f(x) dx=n^(3)...

    Text Solution

    |

  19. Let f(x)=(e^(x)+1)/(e^(-x)-1) and int(0)^(1)x^(3)(e^(x)+1)/(e^(x)-1) d...

    Text Solution

    |

  20. If int(0)^(1) x e^(x^(2) ) dx=alpha int(0)^(1) e^(x^(2)) dx, hten

    Text Solution

    |