Home
Class 12
MATHS
Let f (x) be a conitnuous function defin...

Let f (x) be a conitnuous function defined on [0,a] such that `f(a-x)=f(x)"for all" x in [ 0,a]`. If ` int_(0)^(a//2) f(x) dx=alpha,` then `int _(0)^(a) f(x) dx` is equal to

A

`alpha`

B

`2 alpha`

C

0

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
` underset(0)overset(a)int f(x) d=underset(0)overset(a//2)int [f(x) +f(a-x)] dx=underset(0)overset(a//2)int 2f (x)dx=2 alpha`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x) = f(a+x) and int_(0)^(a) f(x) dx = k, "then" int _(0)^(na) f(x) dx is equal to

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

If int_(-2)^(0) f (x) dx =k, then int_(-2)^(0) |f(x)|dx is

Let f: r in R be a contunuous function given be f(x+y)=f(x)+f(y)"for all " x,b y in R . If int_(0)^(2)f(x)dx=alpha,"then" int_(2)^(2)f(x)dx is equal to

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

Property 7: Let f(x) be a continuous function of x defined on [0;a] such that f(a-x)=f(x) then int_(0)^(a)xf(x)dx=(a)/(2)int_(0)^(a)f(x)dx

int_(0)^(a)[f(x)+f(a-x)]dx=

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If f and g are continuopus fucntions on [ 0, pi] satisfying f(x) +f(p...

    Text Solution

    |

  2. If f(x) and g(x) are two continuous functions defined on [-a,a] then t...

    Text Solution

    |

  3. Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f...

    Text Solution

    |

  4. The value of the integral int(0)^(a//2) sin 2n x cot x dx, where n i...

    Text Solution

    |

  5. The value of the integral rArr int(1)^(e^(6)) [ (log x)/(3)] dx , whe...

    Text Solution

    |

  6. For any natural number n, theb value of rArr int(0)^(n^(2))[ sqrt(x)]d...

    Text Solution

    |

  7. The value of the integral int(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    Text Solution

    |

  8. If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I(2)-I(1),I...

    Text Solution

    |

  9. Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f...

    Text Solution

    |

  10. The vlaue of int(-2)^(2) (sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [*]...

    Text Solution

    |

  11. If int(0)^(x) f(t)dt=x+int(x)^(1) t f(t) dt, then the value of f(1), i...

    Text Solution

    |

  12. If f(x)= int0^(sinx) cos^(-1)t dt +int(0)^(cosx) sin^(-1)t dt, 0 lt ...

    Text Solution

    |

  13. Let f(x) be a continuous function such that int(n)^(n+1) f(x) dx=n^(3)...

    Text Solution

    |

  14. Let f(x)=(e^(x)+1)/(e^(-x)-1) and int(0)^(1)x^(3)(e^(x)+1)/(e^(x)-1) d...

    Text Solution

    |

  15. If int(0)^(1) x e^(x^(2) ) dx=alpha int(0)^(1) e^(x^(2)) dx, hten

    Text Solution

    |

  16. If I=int(0)^(1) (1+e^(-x^2)) dx then, s

    Text Solution

    |

  17. If I= int(0)^(1)(x)/(8+x^(3))dx then the smallest interval is which I ...

    Text Solution

    |

  18. Let f: r in R be a contunuous function given be f(x+y)=f(x)+f(y)"for a...

    Text Solution

    |

  19. Let the be an integrable function defined on [0,a] if I(1)=int(pi//2)^...

    Text Solution

    |

  20. lim(x to 0) (2 int(0)^(cosx) cos^(-1) t dt)/( 2x -sin 2x) is equal to

    Text Solution

    |