Home
Class 12
MATHS
Let f(x) be a continuous function such t...

Let f(x) be a continuous function such that `int_(n)^(n+1) f(x) dx=n^(3) , ninZ`. Then the value of the integeral `int_(-3)^(3) f(x)` dx, is

A

9

B

`-27`

C

`-9`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`underset(-3)overset(3)int f(x)underset(r=0)overset(-5)sumunderset(-3+r)overset(-3+r+1)int f(x)dx`
` rArr underset(-3)overset(3)int f(x)dxunderset(r=0)overset(-5)sum (-3+r)^(3) [ :. underset(n)overset(n+1)int f(x)dx=n^(3)]`
`underset(-3)overset(3)int f(x)dx=[ (-3)^(3)+(-2)^(3)+(-1)^(3)+0^(2)+1^(3)+2^(3)]=-27`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a contiuous function such a int_(n)^(n+1)f(x)dx=n^(3),n in Z. Then,the value of the intergral int_(-3)^(3)f(x)dx(A)9(B)-27(C)-9(D) none of these

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then, the value of the integral int_(0)^(a) (1)/(1+e^(f(x)))dx is equal to

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

Let f(x) be a non-negative continuous function defined on R such that f(x)+f(x+1/2)=3 , then the value of 1/1008 int_(0) ^(2015) f(x) dx is

Let f:R to R be continuous function such that f(x)=f(2x) for all x in R . If f(t)=3, then the value of int_(-1)^(1) f(f(x))dx , is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If int(0)^(x) f(t)dt=x+int(x)^(1) t f(t) dt, then the value of f(1), i...

    Text Solution

    |

  2. If f(x)= int0^(sinx) cos^(-1)t dt +int(0)^(cosx) sin^(-1)t dt, 0 lt ...

    Text Solution

    |

  3. Let f(x) be a continuous function such that int(n)^(n+1) f(x) dx=n^(3)...

    Text Solution

    |

  4. Let f(x)=(e^(x)+1)/(e^(-x)-1) and int(0)^(1)x^(3)(e^(x)+1)/(e^(x)-1) d...

    Text Solution

    |

  5. If int(0)^(1) x e^(x^(2) ) dx=alpha int(0)^(1) e^(x^(2)) dx, hten

    Text Solution

    |

  6. If I=int(0)^(1) (1+e^(-x^2)) dx then, s

    Text Solution

    |

  7. If I= int(0)^(1)(x)/(8+x^(3))dx then the smallest interval is which I ...

    Text Solution

    |

  8. Let f: r in R be a contunuous function given be f(x+y)=f(x)+f(y)"for a...

    Text Solution

    |

  9. Let the be an integrable function defined on [0,a] if I(1)=int(pi//2)^...

    Text Solution

    |

  10. lim(x to 0) (2 int(0)^(cosx) cos^(-1) t dt)/( 2x -sin 2x) is equal to

    Text Solution

    |

  11. If I(1)= int(1)^(sin theta) (x)/(1+x^(2)) dx and I(2) int(1)^("cosec" ...

    Text Solution

    |

  12. If f(x)=int(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

    Text Solution

    |

  13. Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int(1)^(x) (log t)/(1+t) dt Th...

    Text Solution

    |

  14. If int(0)^(x) (bt cos 4 t - a sin 4t)/( t^(2))dt=(a sin 4x)/(x) "for a...

    Text Solution

    |

  15. Let f: R in R be given by f(x)={{:(|x-[x]|,"when[x]is odd"),(|x-[x]-...

    Text Solution

    |

  16. If f(x) = sin x +cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):}...

    Text Solution

    |

  17. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  18. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  19. Let I(1)=int(0)^(1) (e^(x))/(1+x)dx and I(2)=int(0)^(1) (x^(2))/(e^(x^...

    Text Solution

    |

  20. Let f(x)={:{(1-|x|","|x|le 1),(0","" "|x|gt1):} and, g(x)=f(x-1...

    Text Solution

    |