Home
Class 12
MATHS
Let the be an integrable function define...

Let the be an integrable function defined on [0,a] if `I_(1)=int_(pi//2)^(pi//2) cos theta f(sin theta cos ^(2) theta)d theta and I_(2)=int_(0)^(pi//2)sin 2 theta f(sin theta cos ^(2) theta)d theta` then

A

`I_(1)=I_(2)`

B

`I_(1)=-I_(2)`

C

`I_(1)=2I_(2)`

D

`I_(1)=2I_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two integrals \( I_1 \) and \( I_2 \) given in the question: 1. **Define the integrals:** \[ I_1 = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta \, f(\sin \theta \cos^2 \theta) \, d\theta \] \[ I_2 = \int_{0}^{\frac{\pi}{2}} \sin 2\theta \, f(\sin \theta \cos^2 \theta) \, d\theta \] 2. **Set up the equation:** We want to find the relationship between \( I_1 \) and \( I_2 \). We can start by rewriting \( I_1 - I_2 \): \[ I_1 - I_2 = \int_{0}^{\frac{\pi}{2}} \cos \theta \, f(\sin \theta \cos^2 \theta) \, d\theta - \int_{0}^{\frac{\pi}{2}} \sin 2\theta \, f(\sin \theta \cos^2 \theta) \, d\theta \] 3. **Combine the integrals:** Since both integrals are from \( 0 \) to \( \frac{\pi}{2} \), we can combine them: \[ I_1 - I_2 = \int_{0}^{\frac{\pi}{2}} \left( \cos \theta - \sin 2\theta \right) f(\sin \theta \cos^2 \theta) \, d\theta \] 4. **Differentiate the expression:** Now, we differentiate the expression inside the integral: \[ \frac{d}{d\theta}(\sin \theta + \cos^2 \theta) = \cos \theta + 2\cos \theta(-\sin \theta) = \cos \theta - \sin \theta \] Thus, we can express \( \cos \theta - \sin 2\theta \) in terms of the derivative: \[ \cos \theta - \sin 2\theta = \cos \theta - 2\sin \theta \cos \theta = \cos \theta (1 - 2\sin \theta) \] 5. **Substituting back:** Substitute back into the integral: \[ I_1 - I_2 = \int_{0}^{\frac{\pi}{2}} \cos \theta (1 - 2\sin \theta) f(\sin \theta \cos^2 \theta) \, d\theta \] 6. **Change of variable:** Let \( t = \sin \theta + \cos^2 \theta \). Then we need to find the limits of integration. When \( \theta = 0 \), \( t = 0 + 1 = 1 \), and when \( \theta = \frac{\pi}{2} \), \( t = 1 + 0 = 1 \). Thus, the limits remain the same: \[ I_1 - I_2 = \int_{1}^{1} f(t) \, dt = 0 \] 7. **Conclusion:** Since \( I_1 - I_2 = 0 \), we conclude that: \[ I_1 = I_2 \] ### Final Answer: Thus, \( I_1 \) is equal to \( I_2 \).

To solve the problem, we need to analyze the two integrals \( I_1 \) and \( I_2 \) given in the question: 1. **Define the integrals:** \[ I_1 = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta \, f(\sin \theta \cos^2 \theta) \, d\theta \] \[ I_2 = \int_{0}^{\frac{\pi}{2}} \sin 2\theta \, f(\sin \theta \cos^2 \theta) \, d\theta ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f beintegrable over [0,a] for any real value of a . If I_(1)=int_(0)^(pi//2)cos theta f(sin theta +cos^(2) theta) d theta and I_(2)=int_(0)^(pi//2) sin 2 theta f(sin theta+cos^(2) theta) d theta , then

I=int_(0)^( pi/4)(sin2 theta)/(sin^(2)theta+cos^(4)theta)d theta

int_(0)^(pi//2) (sin^(2)theta)/ (1+cos theta)^(2) d theta =

int_(0)^( pi/2)sin^(2)theta d theta=

int_(0)^( pi/2)sin^(2)theta d theta=

Let f(x) be an integrable function defined on [a,b], b gt a gt 0 . If I_(1)=int_(pi//6)^(pi//3) f(tan theta+cos theta)sec^(2) theta d theta and, I_(2)=int_(pi//6)^(pi//3) f(tan theta +cot theta)cosec^(2) theta d theta , then (I_(1))/(I_(2))=

int_(0)^( pi)(sin theta+cos theta)/(sqrt(1+sin2 theta))d theta

int_ (0) ^ (pi / 2) ((theta) / (sin theta)) ^ (2) d theta =

int_(0) ^(pi//2) cos^(2) theta d theta =

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If I= int(0)^(1)(x)/(8+x^(3))dx then the smallest interval is which I ...

    Text Solution

    |

  2. Let f: r in R be a contunuous function given be f(x+y)=f(x)+f(y)"for a...

    Text Solution

    |

  3. Let the be an integrable function defined on [0,a] if I(1)=int(pi//2)^...

    Text Solution

    |

  4. lim(x to 0) (2 int(0)^(cosx) cos^(-1) t dt)/( 2x -sin 2x) is equal to

    Text Solution

    |

  5. If I(1)= int(1)^(sin theta) (x)/(1+x^(2)) dx and I(2) int(1)^("cosec" ...

    Text Solution

    |

  6. If f(x)=int(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

    Text Solution

    |

  7. Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int(1)^(x) (log t)/(1+t) dt Th...

    Text Solution

    |

  8. If int(0)^(x) (bt cos 4 t - a sin 4t)/( t^(2))dt=(a sin 4x)/(x) "for a...

    Text Solution

    |

  9. Let f: R in R be given by f(x)={{:(|x-[x]|,"when[x]is odd"),(|x-[x]-...

    Text Solution

    |

  10. If f(x) = sin x +cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):}...

    Text Solution

    |

  11. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  12. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  13. Let I(1)=int(0)^(1) (e^(x))/(1+x)dx and I(2)=int(0)^(1) (x^(2))/(e^(x^...

    Text Solution

    |

  14. Let f(x)={:{(1-|x|","|x|le 1),(0","" "|x|gt1):} and, g(x)=f(x-1...

    Text Solution

    |

  15. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  16. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  17. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |

  18. If f(x)=int(0)^(x) {f(t)}^(-1)dt, " and " int(0)^(1) {f(t}^(-1)dt=sqrt...

    Text Solution

    |

  19. If f(x) is differentiable and int(0)^(t^(2)) x f(x) dx=(2)/(5)t^(5), t...

    Text Solution

    |

  20. The value of int(-2)^(3) |1-x^(2)|dx is

    Text Solution

    |