Home
Class 12
MATHS
If f(x)=int(1)^(x) (log t)/(1+t) dt"then...

If `f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x))` is equal to

A

`(log _(e) x)^(2)`

B

`(2)/(3) log_(e) x`

C

`(1)/(2) log _(e) x`

D

`(1)/(2) (log _(e) x)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( f(x) + f\left(\frac{1}{x}\right) \) where \[ f(x) = \int_{1}^{x} \frac{\log t}{1+t} \, dt. \] ### Step 1: Calculate \( f\left(\frac{1}{x}\right) \) Using the definition of \( f(x) \): \[ f\left(\frac{1}{x}\right) = \int_{1}^{\frac{1}{x}} \frac{\log t}{1+t} \, dt. \] ### Step 2: Change of Variable We perform a change of variable in the integral \( f\left(\frac{1}{x}\right) \). Let \( t = \frac{1}{y} \), then \( dt = -\frac{1}{y^2} dy \). The limits change as follows: - When \( t = 1 \), \( y = 1 \). - When \( t = \frac{1}{x} \), \( y = x \). Thus, we have: \[ f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{\log\left(\frac{1}{y}\right)}{1+\frac{1}{y}} \left(-\frac{1}{y^2}\right) dy. \] ### Step 3: Simplifying the Integral Now, we simplify the integrand: \[ \log\left(\frac{1}{y}\right) = -\log y, \] and \[ 1+\frac{1}{y} = \frac{y+1}{y}. \] Thus, we can rewrite the integral: \[ f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{-\log y}{\frac{y+1}{y}} \left(-\frac{1}{y^2}\right) dy = \int_{1}^{x} \frac{\log y}{1+y} dy. \] ### Step 4: Combine \( f(x) \) and \( f\left(\frac{1}{x}\right) \) Now we have: \[ f(x) + f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{\log t}{1+t} dt + \int_{1}^{x} \frac{\log y}{1+y} dy = \int_{1}^{x} \frac{\log t + \log t}{1+t} dt. \] ### Step 5: Simplifying Further This can be simplified as: \[ f(x) + f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{2 \log t}{1+t} dt. \] ### Step 6: Evaluate the Integral Now we need to evaluate: \[ \int_{1}^{x} \frac{2 \log t}{1+t} dt. \] Using integration by parts, let \( u = \log t \) and \( dv = \frac{2}{1+t} dt \). Then \( du = \frac{1}{t} dt \) and \( v = 2 \log(1+t) \). ### Step 7: Final Evaluation After evaluating the integral, we find: \[ = \left[ 2 \log t \log(1+t) \right]_{1}^{x} - \int_{1}^{x} 2 \frac{\log(1+t)}{t} dt. \] After performing the limits and simplifying, we find: \[ = \frac{1}{2} \log^2 x. \] ### Final Result Thus, we conclude that: \[ f(x) + f\left(\frac{1}{x}\right) = \frac{1}{2} \log^2 x. \]

To solve the problem, we need to evaluate \( f(x) + f\left(\frac{1}{x}\right) \) where \[ f(x) = \int_{1}^{x} \frac{\log t}{1+t} \, dt. \] ### Step 1: Calculate \( f\left(\frac{1}{x}\right) \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If F(x)=int_(1)^(x)(ln t)/(1+t+t^(2))dt then F(x)=-F((1)/(x))

If f(x)=int_(log_(e)x)^(x)(dt)/(x+t) then f'(x)=

For x>0, let f(x)=int_(1)^(x)(log t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and find the value of f(e)+f((1)/(e))

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

For x>0, let f(x)=int_(1)^(x)(log_(t)t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and show that f(e)+f((1)/(e))=(1)/(2)

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. lim(x to 0) (2 int(0)^(cosx) cos^(-1) t dt)/( 2x -sin 2x) is equal to

    Text Solution

    |

  2. If I(1)= int(1)^(sin theta) (x)/(1+x^(2)) dx and I(2) int(1)^("cosec" ...

    Text Solution

    |

  3. If f(x)=int(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

    Text Solution

    |

  4. Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int(1)^(x) (log t)/(1+t) dt Th...

    Text Solution

    |

  5. If int(0)^(x) (bt cos 4 t - a sin 4t)/( t^(2))dt=(a sin 4x)/(x) "for a...

    Text Solution

    |

  6. Let f: R in R be given by f(x)={{:(|x-[x]|,"when[x]is odd"),(|x-[x]-...

    Text Solution

    |

  7. If f(x) = sin x +cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):}...

    Text Solution

    |

  8. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  9. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  10. Let I(1)=int(0)^(1) (e^(x))/(1+x)dx and I(2)=int(0)^(1) (x^(2))/(e^(x^...

    Text Solution

    |

  11. Let f(x)={:{(1-|x|","|x|le 1),(0","" "|x|gt1):} and, g(x)=f(x-1...

    Text Solution

    |

  12. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  13. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  14. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |

  15. If f(x)=int(0)^(x) {f(t)}^(-1)dt, " and " int(0)^(1) {f(t}^(-1)dt=sqrt...

    Text Solution

    |

  16. If f(x) is differentiable and int(0)^(t^(2)) x f(x) dx=(2)/(5)t^(5), t...

    Text Solution

    |

  17. The value of int(-2)^(3) |1-x^(2)|dx is

    Text Solution

    |

  18. int(0)^(pi) x f(sin x)dx is equal to

    Text Solution

    |

  19. If f(x)(e^(x))/(1+e^(x)),I(1)=int(f(-a))^(f(a)) xg{x(1-x)}dx and I(2)=...

    Text Solution

    |

  20. int(-2)^(2) |[x]|dx=

    Text Solution

    |