Home
Class 12
MATHS
If f(x) = sin x +cos x and g(x) = {:{((|...

If `f(x) = sin x +cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):}` then the value of `int_(-pi//4)^(2pi) ` go f(x) dx is equal to

A

`3pi//4`

B

`pi//4`

C

`pi`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`f(x)= sin x cos x= sqrt (2)n sin (x+(pi)/(4))`
and, ` g(x)={:{((|x|)/(x),","x ne0),(2,","x=0):}`
`rArr g(x) = {{:(1,"," x gt0),(2,","x=0),(-1,"," xlt0):}`
`:. gof (x) ={{:( 1, if x in (-pi//4"," 3pi//4) in(7pi//4","2pi)), (2 , if x = - pi/4 "," (3pi)/(4) "," (7pi)/(4)), (-1 , if x in (3pi//4 "," 7pi//4")):}`
`:. underset(-pi//4)overset(2pi)int go f(x) dx=underset(-pi//4)overset(3pi//4)int 1 dx +underset(3pi//4)overset(7pi//4)int-1dx +underset(7pi//4)overset(2pi)int 1dx`
`rArr underset(-pi//4)overset(2pi)int go f (x) dx=1((3pi)/(4)+ (pi)/(4)) -((7pi)/(4)-(3pi)/(4))+(2pi-(7pi)/(4))`
`rArr underset(-pi//4)overset(2pi)int go f (x) dx=pi -pi+(pi)/(4)=(pi)/(4)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(-pi)^( pi)sin x[f(cos x)]dx is equal to

If f(x)=sin x+cos x and g(x)={(|x|)/(x)x!=0,2,x=0 then the value of int_(-(pi)/(4))^(2 pi)gof(x)dx is equal to

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int_(0)^(2 pi)|cos x-sin x|dx is

The value of integral int _(0)^(pi) x f (sin x ) dx is

If f(x) = |(x,cos x,e^(x^(2))),(sin x,x^(2),sec x),(tan x,1,2)| , then the value of int_(-pi//2)^(pi//2) f(x) dx is equal to

If f(x)=x+sin x, then find the value of int_(pi)^(2 pi)f^(-1)(x)dx

int_(0)^(pi//4) (sin x +cos x)/(3+sin2x)dx is equal to

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If int(0)^(x) (bt cos 4 t - a sin 4t)/( t^(2))dt=(a sin 4x)/(x) "for a...

    Text Solution

    |

  2. Let f: R in R be given by f(x)={{:(|x-[x]|,"when[x]is odd"),(|x-[x]-...

    Text Solution

    |

  3. If f(x) = sin x +cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):}...

    Text Solution

    |

  4. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  5. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  6. Let I(1)=int(0)^(1) (e^(x))/(1+x)dx and I(2)=int(0)^(1) (x^(2))/(e^(x^...

    Text Solution

    |

  7. Let f(x)={:{(1-|x|","|x|le 1),(0","" "|x|gt1):} and, g(x)=f(x-1...

    Text Solution

    |

  8. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  9. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  10. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |

  11. If f(x)=int(0)^(x) {f(t)}^(-1)dt, " and " int(0)^(1) {f(t}^(-1)dt=sqrt...

    Text Solution

    |

  12. If f(x) is differentiable and int(0)^(t^(2)) x f(x) dx=(2)/(5)t^(5), t...

    Text Solution

    |

  13. The value of int(-2)^(3) |1-x^(2)|dx is

    Text Solution

    |

  14. int(0)^(pi) x f(sin x)dx is equal to

    Text Solution

    |

  15. If f(x)(e^(x))/(1+e^(x)),I(1)=int(f(-a))^(f(a)) xg{x(1-x)}dx and I(2)=...

    Text Solution

    |

  16. int(-2)^(2) |[x]|dx=

    Text Solution

    |

  17. The value int^(2)(-2) {p" In"((1+x)/(1-x))+q" In "((1-x)/(1+x))-2+r}...

    Text Solution

    |

  18. 7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

    Text Solution

    |

  19. The value of lim(x to 0)(1)/(x^(3))(t " In"(1+t))/(t^(4)+4)dt is

    Text Solution

    |

  20. Let f be the function defined on [-pi,pi] given by f(0)=9 and f(x)=sin...

    Text Solution

    |