Home
Class 12
MATHS
If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] a...

If `x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)]` and `n in N`, then the value of `int_(0)^(x) [cos t] dt`, is

A

`(2n-1)(pi)/(2)-x`

B

`(2n-1)(pi)/(pi)/(2)-x`

C

`(2n+1)(pi)/(2)-x`

D

`(2n+1)(pi)/(2)+x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^x \lfloor \cos t \rfloor \, dt \) where \( x \) is in the interval \( \left[\frac{(4n+1)\pi}{2}, \frac{(4n+3)\pi}{2}\right] \) and \( n \in \mathbb{N} \), we will follow these steps: ### Step 1: Understand the behavior of \( \cos t \) The cosine function oscillates between -1 and 1. Specifically, in the intervals of interest: - From \( 0 \) to \( \frac{\pi}{2} \), \( \cos t \) decreases from 1 to 0. - From \( \frac{\pi}{2} \) to \( \frac{3\pi}{2} \), \( \cos t \) decreases from 0 to -1 and then back to 0. - From \( \frac{3\pi}{2} \) to \( 2\pi \), \( \cos t \) increases from -1 to 1. ### Step 2: Determine the value of \( \lfloor \cos t \rfloor \) In the interval \( \left[\frac{(4n+1)\pi}{2}, \frac{(4n+3)\pi}{2}\right] \): - At \( t = \frac{(4n+1)\pi}{2} \), \( \cos t = 0 \). - At \( t = \frac{(4n+3)\pi}{2} \), \( \cos t = 0 \). - Between these points, \( \cos t \) takes negative values, specifically from \( 0 \) to \( -1 \). Thus, \( \lfloor \cos t \rfloor = -1 \) for \( t \) in the interval \( \left(\frac{(4n+1)\pi}{2}, \frac{(4n+3)\pi}{2}\right) \). ### Step 3: Set up the integral Now we can set up the integral: \[ \int_0^x \lfloor \cos t \rfloor \, dt = \int_0^{\frac{(4n+1)\pi}{2}} \lfloor \cos t \rfloor \, dt + \int_{\frac{(4n+1)\pi}{2}}^x \lfloor \cos t \rfloor \, dt \] ### Step 4: Evaluate the first part of the integral For \( t \) from \( 0 \) to \( \frac{(4n+1)\pi}{2} \): - \( \lfloor \cos t \rfloor = 0 \) for \( t \in [0, \frac{\pi}{2}) \). - Thus, \( \int_0^{\frac{(4n+1)\pi}{2}} \lfloor \cos t \rfloor \, dt = 0 \). ### Step 5: Evaluate the second part of the integral For \( t \) from \( \frac{(4n+1)\pi}{2} \) to \( x \): \[ \int_{\frac{(4n+1)\pi}{2}}^x \lfloor \cos t \rfloor \, dt = \int_{\frac{(4n+1)\pi}{2}}^x (-1) \, dt = -\left(t \bigg|_{\frac{(4n+1)\pi}{2}}^x\right) = -\left(x - \frac{(4n+1)\pi}{2}\right) \] Thus, \[ \int_{\frac{(4n+1)\pi}{2}}^x \lfloor \cos t \rfloor \, dt = -x + \frac{(4n+1)\pi}{2} \] ### Step 6: Combine the results Combining both parts, we have: \[ \int_0^x \lfloor \cos t \rfloor \, dt = 0 - x + \frac{(4n+1)\pi}{2} = \frac{(4n+1)\pi}{2} - x \] ### Final Result Thus, the value of the integral is: \[ \int_0^x \lfloor \cos t \rfloor \, dt = \frac{(4n+1)\pi}{2} - x \]

To solve the integral \( \int_0^x \lfloor \cos t \rfloor \, dt \) where \( x \) is in the interval \( \left[\frac{(4n+1)\pi}{2}, \frac{(4n+3)\pi}{2}\right] \) and \( n \in \mathbb{N} \), we will follow these steps: ### Step 1: Understand the behavior of \( \cos t \) The cosine function oscillates between -1 and 1. Specifically, in the intervals of interest: - From \( 0 \) to \( \frac{\pi}{2} \), \( \cos t \) decreases from 1 to 0. - From \( \frac{\pi}{2} \) to \( \frac{3\pi}{2} \), \( \cos t \) decreases from 0 to -1 and then back to 0. - From \( \frac{3\pi}{2} \) to \( 2\pi \), \( \cos t \) increases from -1 to 1. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If m ne n , m n in N then the value of int_(0)^(2pi) cos mx cos nx dx is

If A(x)=det[[x^(n),sin x,cos xn!sin((n pi)/(2)),cos((n pi)/(2))a,a^(2),a^(3)]], then the value of (d^(n))/(dx^(n))[Delta(x)] at x=0 is

if int_(0)^( pi/2)(cot x)/(cot x+cos ecx)dx=m(pi-n) then the value of mn is

For each ositive integer n, define a function f _(n) on [0,1] as follows: f _(n((x)={{:(0, if , x =0),(sin ""(pi)/(2n), if , 0 lt x le 1/n),( sin ""(2pi)/(2n) , if , 1/n lt x le 2/n), (sin ""(3pi)/(2pi), if, 2/n lt x le 3/n), (sin "'(npi)/(2pi) , if, (n-1)/(n) lt x le 1):} Then the value of lim _(x to oo)int _(0)^(1) f_(n) (x) dx is:

If the value of the definite integral int_(0)^(1)(sin^(-1)sqrt(x))/(x^(2)-x+1)dx is (pi^(2))/(sqrt(n)) (where n in N), then the value of (n)/(27) is

The value of int_0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N , is equal to where [.] represents greatest integer function. pi/2(2n-1)-2x pi/2(2n-1)+x pi/2(2n+1)-x (d) pi/2(2n+1)+x

Let I_(n)int_(0)^((pi)/(2))(sin x+cos x)^(n)dx(n>=2) Then the value of nI_(n)-2(n-1)I_(n-2) is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. Let f: R in R be given by f(x)={{:(|x-[x]|,"when[x]is odd"),(|x-[x]-...

    Text Solution

    |

  2. If f(x) = sin x +cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):}...

    Text Solution

    |

  3. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  4. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  5. Let I(1)=int(0)^(1) (e^(x))/(1+x)dx and I(2)=int(0)^(1) (x^(2))/(e^(x^...

    Text Solution

    |

  6. Let f(x)={:{(1-|x|","|x|le 1),(0","" "|x|gt1):} and, g(x)=f(x-1...

    Text Solution

    |

  7. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  8. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  9. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |

  10. If f(x)=int(0)^(x) {f(t)}^(-1)dt, " and " int(0)^(1) {f(t}^(-1)dt=sqrt...

    Text Solution

    |

  11. If f(x) is differentiable and int(0)^(t^(2)) x f(x) dx=(2)/(5)t^(5), t...

    Text Solution

    |

  12. The value of int(-2)^(3) |1-x^(2)|dx is

    Text Solution

    |

  13. int(0)^(pi) x f(sin x)dx is equal to

    Text Solution

    |

  14. If f(x)(e^(x))/(1+e^(x)),I(1)=int(f(-a))^(f(a)) xg{x(1-x)}dx and I(2)=...

    Text Solution

    |

  15. int(-2)^(2) |[x]|dx=

    Text Solution

    |

  16. The value int^(2)(-2) {p" In"((1+x)/(1-x))+q" In "((1-x)/(1+x))-2+r}...

    Text Solution

    |

  17. 7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

    Text Solution

    |

  18. The value of lim(x to 0)(1)/(x^(3))(t " In"(1+t))/(t^(4)+4)dt is

    Text Solution

    |

  19. Let f be the function defined on [-pi,pi] given by f(0)=9 and f(x)=sin...

    Text Solution

    |

  20. Let f be a real-valued function defind on the interval (-,1) such that...

    Text Solution

    |