Home
Class 12
MATHS
If int(e)^(x) t f(t)dt=sin x-x cos x-(x^...

If `int_(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2)` for all `x in R-{0}`, then the value of `f((pi)/(6))` will be equal to

A

0

B

1

C

`-(1)/(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`overset(x)underset(e )int t f (t) dt =sin x-x cos x -(x^(2))/(2)`
Differentaiting both sides w.r. to x, we get
x f(x)=cos x -cos x +x sin x-x
`f(x)=sin x-1 rArr f((pi)/(6))=(1)/(2)-1=-(1)/(2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(x)f(t)dt=x cos pi x then f(3)=

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

Knowledge Check

  • If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

    A
    1
    B
    `-1`
    C
    0
    D
    `1/2`
  • If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

    A
    f has a local maximum at `x = 2`
    B
    f is decreasing on `(2,3)`
    C
    there exists some `c in (0, oo)` such that `f"(c ) = 0`
    D
    f has a local minimum at `x = 3`
  • If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

    A
    `1//2`
    B
    `1//3`
    C
    `1//4`
    D
    `1//5`
  • Similar Questions

    Explore conceptually related problems

    If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to

    If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

    If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

    If f(x)=int_1^xsin^2(t/2)dt , then the value of lim_(xrarr0)(f'(pi+x)-f(x))/x is equal to

    If f(x)=int_1^x sin^2(t/2) dt, then the value of lim_(xrarr0) (f(pi+x)-f(x))/x is equal to