Home
Class 12
MATHS
The value of int(-2)^(3) |1-x^(2)|dx is...

The value of `int_(-2)^(3) |1-x^(2)|dx` is

A

`(1)/(3)`

B

`(14)/(3)`

C

`(7)/(3)`

D

(28)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-2}^{3} |1 - x^2| \, dx \), we will first analyze the expression inside the absolute value, \( |1 - x^2| \). ### Step 1: Identify the points where \( 1 - x^2 = 0 \) To find the intervals where the expression changes sign, we set \( 1 - x^2 = 0 \): \[ 1 = x^2 \implies x = \pm 1 \] Thus, the critical points are \( x = -1 \) and \( x = 1 \). ### Step 2: Determine the sign of \( 1 - x^2 \) in each interval We will evaluate the sign of \( 1 - x^2 \) in the intervals: 1. \( (-\infty, -1) \) 2. \( (-1, 1) \) 3. \( (1, \infty) \) - For \( x < -1 \) (e.g., \( x = -2 \)): \[ 1 - (-2)^2 = 1 - 4 = -3 \quad \text{(negative)} \] - For \( -1 < x < 1 \) (e.g., \( x = 0 \)): \[ 1 - 0^2 = 1 \quad \text{(positive)} \] - For \( x > 1 \) (e.g., \( x = 2 \)): \[ 1 - 2^2 = 1 - 4 = -3 \quad \text{(negative)} \] ### Step 3: Rewrite the integral based on the sign of \( 1 - x^2 \) The integral can be split into three parts based on the intervals: \[ \int_{-2}^{3} |1 - x^2| \, dx = \int_{-2}^{-1} -(1 - x^2) \, dx + \int_{-1}^{1} (1 - x^2) \, dx + \int_{1}^{3} -(1 - x^2) \, dx \] ### Step 4: Evaluate each integral 1. **Integral from \(-2\) to \(-1\)**: \[ \int_{-2}^{-1} -(1 - x^2) \, dx = \int_{-2}^{-1} (x^2 - 1) \, dx \] \[ = \left[ \frac{x^3}{3} - x \right]_{-2}^{-1} = \left( \frac{(-1)^3}{3} - (-1) \right) - \left( \frac{(-2)^3}{3} - (-2) \right) \] \[ = \left( -\frac{1}{3} + 1 \right) - \left( -\frac{8}{3} + 2 \right) = \left( \frac{2}{3} \right) - \left( -\frac{2}{3} \right) = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \] 2. **Integral from \(-1\) to \(1\)**: \[ \int_{-1}^{1} (1 - x^2) \, dx = \left[ x - \frac{x^3}{3} \right]_{-1}^{1} \] \[ = \left( 1 - \frac{1}{3} \right) - \left( -1 + \frac{1}{3} \right) = \left( \frac{2}{3} \right) - \left( -\frac{2}{3} \right) = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \] 3. **Integral from \(1\) to \(3\)**: \[ \int_{1}^{3} -(1 - x^2) \, dx = \int_{1}^{3} (x^2 - 1) \, dx \] \[ = \left[ \frac{x^3}{3} - x \right]_{1}^{3} = \left( \frac{27}{3} - 3 \right) - \left( \frac{1}{3} - 1 \right) \] \[ = (9 - 3) - \left( \frac{1}{3} - 1 \right) = 6 - \left( -\frac{2}{3} \right) = 6 + \frac{2}{3} = \frac{18}{3} + \frac{2}{3} = \frac{20}{3} \] ### Step 5: Combine the results Now, we sum all three integrals: \[ \int_{-2}^{3} |1 - x^2| \, dx = \frac{4}{3} + \frac{4}{3} + \frac{20}{3} = \frac{28}{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{-2}^{3} |1 - x^2| \, dx = \frac{28}{3} \]

To solve the integral \( \int_{-2}^{3} |1 - x^2| \, dx \), we will first analyze the expression inside the absolute value, \( |1 - x^2| \). ### Step 1: Identify the points where \( 1 - x^2 = 0 \) To find the intervals where the expression changes sign, we set \( 1 - x^2 = 0 \): \[ 1 = x^2 \implies x = \pm 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-2)^(2)|1-x^(2)|dx is equal to

The value of int_(-2)^(2)|1-x^(2)|dx is

The value of int_(0)^(2)|1-x|dx

The value of int _(-1) ^(3) | 1- x ^(2) | dx is -

The value of int_-2^3 |1-x^2|dx is (A) 7/3 (B) 14/3 (C) 28/3 (D) 1/3

The value of int_(-a)^(a)1/(x+x^(3))dx is

The value of int_(-1)^(1)(|x+2|)/(x+2)dx is

The value of int_(-2)^(2)x(x-1)dx is:

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If f(x)=int(0)^(x) {f(t)}^(-1)dt, " and " int(0)^(1) {f(t}^(-1)dt=sqrt...

    Text Solution

    |

  2. If f(x) is differentiable and int(0)^(t^(2)) x f(x) dx=(2)/(5)t^(5), t...

    Text Solution

    |

  3. The value of int(-2)^(3) |1-x^(2)|dx is

    Text Solution

    |

  4. int(0)^(pi) x f(sin x)dx is equal to

    Text Solution

    |

  5. If f(x)(e^(x))/(1+e^(x)),I(1)=int(f(-a))^(f(a)) xg{x(1-x)}dx and I(2)=...

    Text Solution

    |

  6. int(-2)^(2) |[x]|dx=

    Text Solution

    |

  7. The value int^(2)(-2) {p" In"((1+x)/(1-x))+q" In "((1-x)/(1+x))-2+r}...

    Text Solution

    |

  8. 7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

    Text Solution

    |

  9. The value of lim(x to 0)(1)/(x^(3))(t " In"(1+t))/(t^(4)+4)dt is

    Text Solution

    |

  10. Let f be the function defined on [-pi,pi] given by f(0)=9 and f(x)=sin...

    Text Solution

    |

  11. Let f be a real-valued function defind on the interval (-,1) such that...

    Text Solution

    |

  12. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  13. Let of a real-valued function defined on the interval(0,oo) by f(x)=In...

    Text Solution

    |

  14. Let p(x) be a function defined on R such that p'(x)=p' for all z in[0,...

    Text Solution

    |

  15. If int(a)^(b) {f(x)-3x}dx=a^(2)-b^(2), then the value of f((pi)/(6)), ...

    Text Solution

    |

  16. The value of (pi^(2))/("In"3)int(7//6)^(5//6) sec(pix)dx is

    Text Solution

    |

  17. The value of the integral int(-pi//2)^(pi//2) {x^(2)+log((pi+x)/(pi-...

    Text Solution

    |

  18. Let f:(0,1) in (0,1) be a differenttiable function such that f(x)ne 0 ...

    Text Solution

    |

  19. The value of the integral int(0)^(2) (log(x^(2)+2))/((x+2)^(2)), dx is

    Text Solution

    |

  20. The integral int(pi//4)^(pi//2) (2 cosecx)^(17)dx is equal to

    Text Solution

    |