Home
Class 12
MATHS
int(-2)^(2) |[x]|dx=...

`int_(-2)^(2) |[x]|dx=`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-2}^{2} |x| \, dx \), we need to break it down into manageable parts since the absolute value function \( |x| \) behaves differently on the intervals where \( x \) is negative and where \( x \) is positive. ### Step 1: Break the integral into intervals The function \( |x| \) can be expressed as: - \( |x| = -x \) when \( x < 0 \) - \( |x| = x \) when \( x \geq 0 \) Thus, we can split the integral at \( x = 0 \): \[ \int_{-2}^{2} |x| \, dx = \int_{-2}^{0} |x| \, dx + \int_{0}^{2} |x| \, dx \] ### Step 2: Evaluate the first integral For the interval from \(-2\) to \(0\): \[ \int_{-2}^{0} |x| \, dx = \int_{-2}^{0} -x \, dx \] Now, we compute this integral: \[ = -\left[ \frac{x^2}{2} \right]_{-2}^{0} = -\left( \frac{0^2}{2} - \frac{(-2)^2}{2} \right) = -\left( 0 - \frac{4}{2} \right) = -(-2) = 2 \] ### Step 3: Evaluate the second integral For the interval from \(0\) to \(2\): \[ \int_{0}^{2} |x| \, dx = \int_{0}^{2} x \, dx \] Now, we compute this integral: \[ = \left[ \frac{x^2}{2} \right]_{0}^{2} = \left( \frac{2^2}{2} - \frac{0^2}{2} \right) = \left( \frac{4}{2} - 0 \right) = 2 \] ### Step 4: Combine the results Now, we add the results of the two integrals: \[ \int_{-2}^{2} |x| \, dx = 2 + 2 = 4 \] ### Final Answer Thus, the value of the integral \( \int_{-2}^{2} |x| \, dx \) is \( \boxed{4} \).

To solve the integral \( \int_{-2}^{2} |x| \, dx \), we need to break it down into manageable parts since the absolute value function \( |x| \) behaves differently on the intervals where \( x \) is negative and where \( x \) is positive. ### Step 1: Break the integral into intervals The function \( |x| \) can be expressed as: - \( |x| = -x \) when \( x < 0 \) - \( |x| = x \) when \( x \geq 0 \) Thus, we can split the integral at \( x = 0 \): ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(-2)^(2)[x]dx

The value of int_(-2)^(2) |[x]| dx is equal to

int_(-2)^(2)|x+1|dx

int_(-2)^(2)(2-|x|)dx

What is int_(-2)^(2) xdx -int_(-2)^(2) [x]dx equal to , where [.] is the greatest integer function ?

int_(-2)^(+2){x-[x]}dx

int_(1)^(2)[2x]dx

int_(0)^(2)x^(2)[x]dx

int_(-1)^(2) 2^(x)dx

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. int(0)^(pi) x f(sin x)dx is equal to

    Text Solution

    |

  2. If f(x)(e^(x))/(1+e^(x)),I(1)=int(f(-a))^(f(a)) xg{x(1-x)}dx and I(2)=...

    Text Solution

    |

  3. int(-2)^(2) |[x]|dx=

    Text Solution

    |

  4. The value int^(2)(-2) {p" In"((1+x)/(1-x))+q" In "((1-x)/(1+x))-2+r}...

    Text Solution

    |

  5. 7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

    Text Solution

    |

  6. The value of lim(x to 0)(1)/(x^(3))(t " In"(1+t))/(t^(4)+4)dt is

    Text Solution

    |

  7. Let f be the function defined on [-pi,pi] given by f(0)=9 and f(x)=sin...

    Text Solution

    |

  8. Let f be a real-valued function defind on the interval (-,1) such that...

    Text Solution

    |

  9. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  10. Let of a real-valued function defined on the interval(0,oo) by f(x)=In...

    Text Solution

    |

  11. Let p(x) be a function defined on R such that p'(x)=p' for all z in[0,...

    Text Solution

    |

  12. If int(a)^(b) {f(x)-3x}dx=a^(2)-b^(2), then the value of f((pi)/(6)), ...

    Text Solution

    |

  13. The value of (pi^(2))/("In"3)int(7//6)^(5//6) sec(pix)dx is

    Text Solution

    |

  14. The value of the integral int(-pi//2)^(pi//2) {x^(2)+log((pi+x)/(pi-...

    Text Solution

    |

  15. Let f:(0,1) in (0,1) be a differenttiable function such that f(x)ne 0 ...

    Text Solution

    |

  16. The value of the integral int(0)^(2) (log(x^(2)+2))/((x+2)^(2)), dx is

    Text Solution

    |

  17. The integral int(pi//4)^(pi//2) (2 cosecx)^(17)dx is equal to

    Text Solution

    |

  18. Let f:[0,2] in R be a function which is continuous on [0,2] and is dif...

    Text Solution

    |

  19. Given that for each a in (0,1) lim^(h to 0^(+)) int(h)^(1-h) t^(-a)(1...

    Text Solution

    |

  20. Given that for each a in (0,1)lim(x to 0) int(h)^(-h) t^(-a)(1-t)^(a-1...

    Text Solution

    |