Home
Class 12
MATHS
Let f be the function defined on [-pi,pi...

Let `f` be the function defined on `[-pi,pi]` given by `f(0)=9` and `f(x)=sin((9x)/2)/sin(x/2)` for `x!=0`. The value of `2/pi int_-pi^pif(x)dx` is (asked as Match the following question)

A

0

B

2

C

4

D

6

Text Solution

Verified by Experts

The correct Answer is:
C

Let `I=(2)/(pi)overset(pi)underset(-pi)int f(x)dx`. Then,
`I=(2)/(pi)overset(pi)underset(-pi)int ("sin"((9x)/(2)))/("sin"((x)/(2)))dx`
`rArrI=(4)/(pi)overset(pi)underset(0)int ("sin"(9x)/(2))/("sin"(x)/(2))dx`
`rArr I=(8)/(pi)overset(pi//2)underset(0)int (sin9theta)/(sintheta)d theta`
`rArr I=((sin9 theta-sin7theta)+(sin7theta-sin5theta)+(sin5theta-sin3theta)+(sin3theta-sintheta)+sintheta)/(sin theta)d theta`
`rArr I=(8)/(pi)overset(pi//2)underset(pi)(cos8 theta+cos 6theta+cos 4theta+cos 2 theta+1)d theta`
`rArrI=(8)/(pi)xx(pi)/(2)=4`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of integral int _(0)^(pi) x f (sin x ) dx is

Let the function f(x) = sin x + cos x , be defined in [0, 2pi] , then f(x)

If f(x)=x+sin x, then find the value of int_(pi)^(2 pi)f^(-1)(x)dx

If f(x)=int(sinx)/(cos^(2)x)(1-3sin^(3)x)dx , then value of (f(0)-f(pi)+(9pi)/2) is

If f(x)=cos ec(x-(pi)/(3))cos ec(x-(pi)/(6)) then the value of int_(0)^((pi)/(2))f(x)dx is

int_(-pi)^( pi)sin x[f(cos x)]dx is equal to

Let a function f:R to R be defined as f (x) =x+ sin x. The value of int _(0) ^(2pi)f ^(-1)(x) dx will be:

int_(-pi)^( pi)(sin[(9x)/(2)])/(sin[(x)/(2)])*dx

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. 7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

    Text Solution

    |

  2. The value of lim(x to 0)(1)/(x^(3))(t " In"(1+t))/(t^(4)+4)dt is

    Text Solution

    |

  3. Let f be the function defined on [-pi,pi] given by f(0)=9 and f(x)=sin...

    Text Solution

    |

  4. Let f be a real-valued function defind on the interval (-,1) such that...

    Text Solution

    |

  5. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  6. Let of a real-valued function defined on the interval(0,oo) by f(x)=In...

    Text Solution

    |

  7. Let p(x) be a function defined on R such that p'(x)=p' for all z in[0,...

    Text Solution

    |

  8. If int(a)^(b) {f(x)-3x}dx=a^(2)-b^(2), then the value of f((pi)/(6)), ...

    Text Solution

    |

  9. The value of (pi^(2))/("In"3)int(7//6)^(5//6) sec(pix)dx is

    Text Solution

    |

  10. The value of the integral int(-pi//2)^(pi//2) {x^(2)+log((pi+x)/(pi-...

    Text Solution

    |

  11. Let f:(0,1) in (0,1) be a differenttiable function such that f(x)ne 0 ...

    Text Solution

    |

  12. The value of the integral int(0)^(2) (log(x^(2)+2))/((x+2)^(2)), dx is

    Text Solution

    |

  13. The integral int(pi//4)^(pi//2) (2 cosecx)^(17)dx is equal to

    Text Solution

    |

  14. Let f:[0,2] in R be a function which is continuous on [0,2] and is dif...

    Text Solution

    |

  15. Given that for each a in (0,1) lim^(h to 0^(+)) int(h)^(1-h) t^(-a)(1...

    Text Solution

    |

  16. Given that for each a in (0,1)lim(x to 0) int(h)^(-h) t^(-a)(1-t)^(a-1...

    Text Solution

    |

  17. The options (s) with the values of a and L that satisfy the following ...

    Text Solution

    |

  18. Let f:R to R be a continuous odd function, which vanishes exactly at o...

    Text Solution

    |

  19. Let f:R to R be a thrice differentiable function. Suppose that F(1)=0,...

    Text Solution

    |

  20. Let f:(0,prop) to R be continous function such that F(x)=int(0)^(x) ...

    Text Solution

    |