Home
Class 12
MATHS
Let f be a real-valued function defind o...

Let f be a real-valued function defind on the interval (-,1) such that `e^(-x)f(x)2+int_0^(x) sqrt(t^(4)+1)dt` for all `x in (-1,1)` and let `f^(-1)` be the inverse function of f. Then, `(f^(-1))`'(2) is equal to

A

1

B

`1//3`

C

`1//2`

D

`1//e`

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`e^(x)f(x)=2+overset(x)underset(0)int sqrt(t^(4)+1)dt " "`……….(i)
Differentiating both sides w.r. to x, we get
`rArr- e^(-x)f(x)+e^(-x)f'(x)=sqrt(x^(4)+1) " "`.......(ii)
Now,
`fof^(-1)(x)=x`
`rArr (d)/(dx)(fof^(-1)(x))=1`
`rArr (d)/(dx){f(f^(-1)(x))}=1`
`rArr f'(f^(-1)(2))(f^(-1))'(2)=1" "`[Puttingx=2]
`rArr f'(0)(f^(-1))(2)=1 " "[:' f(0)=2 rArrf^(-1)(2)=0]`
`rArr (f^(-^(N)1))'(2)=(1)/(f'(0))["Putting " x=0 in (ii),
-f(0)+f'(0)=1 rArr f'(0)=3]`
`rArr (f^(-1))'(2)=(1)/(3)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f be a real-valued function defined on the inverval (-1,1) such that e^(-x)f(x)=2+int_0^xsqrt(t^4+1)dt , for all, x in (-1,1)a n dl e tf^(-1) be the inverse function of fdot Then (f^(-1))^'(2) is equal to 1 (b) 1/3 (c) 1/2 (d) 1/e

Let f be a real-valued function on the interval (-1,1) such that e^(-x) f(x)=2+underset(0)overset(x)int sqrt(t^(4)+1), dt, AA x in (-1,1) and let f^(-1) be the inverse function of f. Then [f^(-1) (2)] is a equal to:

Let f be a non-negative function defined on the interval .[0,1].If int_0^x sqrt[1-(f'(t))^2].dt=int_0^x f(t).dt, 0<=x<=1 and f(0)=0,then

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. The value of lim(x to 0)(1)/(x^(3))(t " In"(1+t))/(t^(4)+4)dt is

    Text Solution

    |

  2. Let f be the function defined on [-pi,pi] given by f(0)=9 and f(x)=sin...

    Text Solution

    |

  3. Let f be a real-valued function defind on the interval (-,1) such that...

    Text Solution

    |

  4. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  5. Let of a real-valued function defined on the interval(0,oo) by f(x)=In...

    Text Solution

    |

  6. Let p(x) be a function defined on R such that p'(x)=p' for all z in[0,...

    Text Solution

    |

  7. If int(a)^(b) {f(x)-3x}dx=a^(2)-b^(2), then the value of f((pi)/(6)), ...

    Text Solution

    |

  8. The value of (pi^(2))/("In"3)int(7//6)^(5//6) sec(pix)dx is

    Text Solution

    |

  9. The value of the integral int(-pi//2)^(pi//2) {x^(2)+log((pi+x)/(pi-...

    Text Solution

    |

  10. Let f:(0,1) in (0,1) be a differenttiable function such that f(x)ne 0 ...

    Text Solution

    |

  11. The value of the integral int(0)^(2) (log(x^(2)+2))/((x+2)^(2)), dx is

    Text Solution

    |

  12. The integral int(pi//4)^(pi//2) (2 cosecx)^(17)dx is equal to

    Text Solution

    |

  13. Let f:[0,2] in R be a function which is continuous on [0,2] and is dif...

    Text Solution

    |

  14. Given that for each a in (0,1) lim^(h to 0^(+)) int(h)^(1-h) t^(-a)(1...

    Text Solution

    |

  15. Given that for each a in (0,1)lim(x to 0) int(h)^(-h) t^(-a)(1-t)^(a-1...

    Text Solution

    |

  16. The options (s) with the values of a and L that satisfy the following ...

    Text Solution

    |

  17. Let f:R to R be a continuous odd function, which vanishes exactly at o...

    Text Solution

    |

  18. Let f:R to R be a thrice differentiable function. Suppose that F(1)=0,...

    Text Solution

    |

  19. Let f:(0,prop) to R be continous function such that F(x)=int(0)^(x) ...

    Text Solution

    |

  20. If f:[0,1] to [0,prop) is differentiable function with decreasing fir...

    Text Solution

    |