Home
Class 12
MATHS
The value of the integral int(-pi//2)^...

The value of the integral
`int_(-pi//2)^(pi//2) {x^(2)+log((pi+x)/(pi-x))}cos x dx `is

A

0

B

`(pi^(2))/(2)-4`

C

`(pi^(2))/(2)-6`

D

`(pi^(2))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( x^2 + \log\left(\frac{\pi + x}{\pi - x}\right) \right) \cos x \, dx, \] we can break it into two parts: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log\left(\frac{\pi + x}{\pi - x}\right) \cos x \, dx. \] ### Step 1: Evaluate the first integral Let \[ I_1 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \, dx. \] Since \(x^2\) is an even function and \(\cos x\) is also an even function, their product \(x^2 \cos x\) is even. Therefore, we can simplify the integral: \[ I_1 = 2 \int_0^{\frac{\pi}{2}} x^2 \cos x \, dx. \] ### Step 2: Evaluate the second integral Now consider \[ I_2 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log\left(\frac{\pi + x}{\pi - x}\right) \cos x \, dx. \] To determine whether this integral is odd or even, we can evaluate \(I_2\) at \(-x\): \[ I_2 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log\left(\frac{\pi - x}{\pi + x}\right) \cos(-x) \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log\left(\frac{\pi - x}{\pi + x}\right) \cos x \, dx. \] Notice that \[ \log\left(\frac{\pi - x}{\pi + x}\right) = -\log\left(\frac{\pi + x}{\pi - x}\right). \] Thus, we have: \[ I_2 = -I_2 \implies 2I_2 = 0 \implies I_2 = 0. \] ### Step 3: Combine the results Now we can combine the results: \[ I = I_1 + I_2 = I_1 + 0 = I_1. \] ### Step 4: Evaluate \(I_1\) To evaluate \(I_1 = 2 \int_0^{\frac{\pi}{2}} x^2 \cos x \, dx\), we can use integration by parts. Let: - \(u = x^2\) and \(dv = \cos x \, dx\), - Then, \(du = 2x \, dx\) and \(v = \sin x\). Applying integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ \int x^2 \cos x \, dx = x^2 \sin x \bigg|_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} 2x \sin x \, dx. \] Evaluating the boundary term: \[ x^2 \sin x \bigg|_0^{\frac{\pi}{2}} = \left(\frac{\pi^2}{4} \cdot 1\right) - (0) = \frac{\pi^2}{4}. \] Now we need to evaluate \[ \int_0^{\frac{\pi}{2}} 2x \sin x \, dx. \] Using integration by parts again with: - \(u = 2x\) and \(dv = \sin x \, dx\), - Then \(du = 2 \, dx\) and \(v = -\cos x\). We have: \[ \int 2x \sin x \, dx = -2x \cos x \bigg|_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} 2 \cos x \, dx. \] Evaluating the boundary term: \[ -2x \cos x \bigg|_0^{\frac{\pi}{2}} = 0 + 2(0) = 0. \] Now we evaluate \[ \int_0^{\frac{\pi}{2}} 2 \cos x \, dx = 2 \sin x \bigg|_0^{\frac{\pi}{2}} = 2(1 - 0) = 2. \] Thus, \[ \int_0^{\frac{\pi}{2}} 2x \sin x \, dx = 0 + 2 = 2. \] ### Final Calculation So we have: \[ I_1 = \frac{\pi^2}{4} - 2. \] Thus, \[ I = 2I_1 = 2\left(\frac{\pi^2}{4} - 2\right) = \frac{\pi^2}{2} - 4. \] ### Conclusion The value of the integral is: \[ \boxed{\frac{\pi^2}{2} - 4}. \]

To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( x^2 + \log\left(\frac{\pi + x}{\pi - x}\right) \right) \cos x \, dx, \] we can break it into two parts: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-(pi)/(2))^((pi)/(2))(x^(2)+ln((pi+x)/(pi-x)))cos xdx is

The value of the integral int_(-pi//2)^(pi//2) (x^(2)+ln'(pi+x)/(x-a)) cosx dx is

The value of the integral int_(pi//2)^(pi//2)(x^2ln(pi+x)/(pi-x))cosx\ dx is a. 0 b. (pi^2)/2-4 c. (pi^2)/2+4 d. (pi^2)/2

Value of the integral int _(-pi//2)^(pi//2) cos x dx is

The value of the integral int_(-pi//2)^(pi//2) sqrt((1+cos^(2)x)/(2))dx is

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

The value of the integral int_(-pi//2)^(pi//2) sqrt(cos -cos^(2)x)dx is

The value of the integral int_(-pi//2)^(pi//2) sin^(4) x (1+ log ((2+ sinx)/( 2- sin x))) dx is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If int(a)^(b) {f(x)-3x}dx=a^(2)-b^(2), then the value of f((pi)/(6)), ...

    Text Solution

    |

  2. The value of (pi^(2))/("In"3)int(7//6)^(5//6) sec(pix)dx is

    Text Solution

    |

  3. The value of the integral int(-pi//2)^(pi//2) {x^(2)+log((pi+x)/(pi-...

    Text Solution

    |

  4. Let f:(0,1) in (0,1) be a differenttiable function such that f(x)ne 0 ...

    Text Solution

    |

  5. The value of the integral int(0)^(2) (log(x^(2)+2))/((x+2)^(2)), dx is

    Text Solution

    |

  6. The integral int(pi//4)^(pi//2) (2 cosecx)^(17)dx is equal to

    Text Solution

    |

  7. Let f:[0,2] in R be a function which is continuous on [0,2] and is dif...

    Text Solution

    |

  8. Given that for each a in (0,1) lim^(h to 0^(+)) int(h)^(1-h) t^(-a)(1...

    Text Solution

    |

  9. Given that for each a in (0,1)lim(x to 0) int(h)^(-h) t^(-a)(1-t)^(a-1...

    Text Solution

    |

  10. The options (s) with the values of a and L that satisfy the following ...

    Text Solution

    |

  11. Let f:R to R be a continuous odd function, which vanishes exactly at o...

    Text Solution

    |

  12. Let f:R to R be a thrice differentiable function. Suppose that F(1)=0,...

    Text Solution

    |

  13. Let f:(0,prop) to R be continous function such that F(x)=int(0)^(x) ...

    Text Solution

    |

  14. If f:[0,1] to [0,prop) is differentiable function with decreasing fir...

    Text Solution

    |

  15. If f(x) is differentiable function and f(x)=x^(2)+int(0)^(x) e^(-t) (x...

    Text Solution

    |

  16. If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 an...

    Text Solution

    |

  17. If a function y=f(x) such that f'(x) is continuous function and satisf...

    Text Solution

    |

  18. The maximum value of f(x)=int(0)^(1) t sin (x+pi t)dt is

    Text Solution

    |

  19. If I(n)=int(0)^(pi) e^(x)sin^(n)x " dx then " (I(3))/(I(1)) is equal t...

    Text Solution

    |

  20. If k=int(0)^(1) (e^(t))/(1+t)dt, then int(0)^(1) e^(t)log(e )(1+t)dt i...

    Text Solution

    |