Home
Class 12
MATHS
Let f:(0,1) in (0,1) be a differenttiabl...

Let `f:(0,1) in (0,1)` be a differenttiable function such that `f(x)ne 0` for all `x in (0,1)` and `f((1)/(2))=(sqrt(3))/(2)`. Suppose for all x,
`lim_(x to x)(int_(0)^(1) sqrt(1(f(s))^(2))dxint_(0)^(x) sqrt(1(f(s))^(2))ds)/(f(t)-f(x))=f(x)`
Then, the value of `f((1)/(4))` belongs to

A

`{(sqrt(7),sqrt(15))}`

B

`{sqrt(7)/(2),sqrt(15)/(2)}`

C

`{sqrt(7)/(3),sqrt(15)/(3)}`

D

`{sqrt(7)/(4),sqrt(15)/(4)}`

Text Solution

Verified by Experts

The correct Answer is:
D

Appling L' Hospital's rule on LHS, we get
`underset(t inx)lim(sqrt(1-{f(t)}^(2)))/(f'(t))=f(x)`
`rArr (sqrt(1-(f(x))^(2)))/(f'(x))=f(x)`
`rArr (f(x)f'(x))/(sqrt(1-(f(x))^(2)))=1`
`rArr (-2f(x)f'(x))/(sqrt(1-(f(x))^(2)))=-2`
`rArr (1)/(sqrt(1-(f(x))^(2)))d{1-(f(x))^(2)}=-2`
`rArr 2sqrt(1-(f(x))^(2))=-2x+C` [On integrating]`" "`......(i)
Putting `x=(1)/(2)` on both sides and using `f((1)/(2))=(sqrt(3))/(2)`, we get C=2
Putting C=2 in (i), we get
`sqrt(1-(f(x))^(2))=-x+1`
`rArrf(x)=sqrt(2x-x^(2))`
`rArr f((1)/(4))=(sqrt(7))/(4)`
Hence,`f((1)/(4))` belongs to `{(sqrt(7))/(4),(sqrt(15))/(4)}`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f:(-1,1)rarrR be a differentiable function satisfying (f'(x))^4=16(f(x))^2 for all x in (-1,1) , f(0)=0. The number of such functions is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f(x)=int_(0)^(x){f(t)}^(-1)dt and int_(0)^(1){f(t)}^(-1)=sqrt(2)

Let f defined on [0,1] be twice differentiable such that |f(x)|<=1 for x in[0,1], if f(0)=f(1) then show that |f'(x)<1 for all x in[0,1]

Let f:R rarr R be a differentiable and strictly decreasing function such that f(0)=1 and f(1)=0. For x in R, let F(x)=int_(0)^(x)(t-2)f(t)dt

If f(x) be a differentiable function for all positive numbers such that f(x.y)=f(x)+f(y) and f(e)=1 then lim_(x rarr0)(f(x+1))/(2x)

If a function fis such that f(x)=int_(0)^(x)(dx)/(f(x)) and f(1)=sqrt(2), then the value of f(2) is

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then int_0^a dx/(1+e^(f(x)))= (A) a (B) a/2 (C) 1/2f(a) (D) none of these

A derivable function f(x) satisfies the relation f(x)=int_(0)^(1)xf(t)dt+int_(0)^(x)x^(2)f(t)dt. The value of (2f'(1))/(f(1)) is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. The value of (pi^(2))/("In"3)int(7//6)^(5//6) sec(pix)dx is

    Text Solution

    |

  2. The value of the integral int(-pi//2)^(pi//2) {x^(2)+log((pi+x)/(pi-...

    Text Solution

    |

  3. Let f:(0,1) in (0,1) be a differenttiable function such that f(x)ne 0 ...

    Text Solution

    |

  4. The value of the integral int(0)^(2) (log(x^(2)+2))/((x+2)^(2)), dx is

    Text Solution

    |

  5. The integral int(pi//4)^(pi//2) (2 cosecx)^(17)dx is equal to

    Text Solution

    |

  6. Let f:[0,2] in R be a function which is continuous on [0,2] and is dif...

    Text Solution

    |

  7. Given that for each a in (0,1) lim^(h to 0^(+)) int(h)^(1-h) t^(-a)(1...

    Text Solution

    |

  8. Given that for each a in (0,1)lim(x to 0) int(h)^(-h) t^(-a)(1-t)^(a-1...

    Text Solution

    |

  9. The options (s) with the values of a and L that satisfy the following ...

    Text Solution

    |

  10. Let f:R to R be a continuous odd function, which vanishes exactly at o...

    Text Solution

    |

  11. Let f:R to R be a thrice differentiable function. Suppose that F(1)=0,...

    Text Solution

    |

  12. Let f:(0,prop) to R be continous function such that F(x)=int(0)^(x) ...

    Text Solution

    |

  13. If f:[0,1] to [0,prop) is differentiable function with decreasing fir...

    Text Solution

    |

  14. If f(x) is differentiable function and f(x)=x^(2)+int(0)^(x) e^(-t) (x...

    Text Solution

    |

  15. If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 an...

    Text Solution

    |

  16. If a function y=f(x) such that f'(x) is continuous function and satisf...

    Text Solution

    |

  17. The maximum value of f(x)=int(0)^(1) t sin (x+pi t)dt is

    Text Solution

    |

  18. If I(n)=int(0)^(pi) e^(x)sin^(n)x " dx then " (I(3))/(I(1)) is equal t...

    Text Solution

    |

  19. If k=int(0)^(1) (e^(t))/(1+t)dt, then int(0)^(1) e^(t)log(e )(1+t)dt i...

    Text Solution

    |

  20. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |