Home
Class 12
MATHS
If f:[0,1] to [0,prop) is differentiable...

If `f:[0,1] to [0,prop)` is differentiable function with decreasing first derivative suc that f(0)=0 and `f'(x) gt 0`, then

A

`underset(0)overset(1)int (1)/(f^(2)(x)+1)dx gt(f(1))/(f'(1))`

B

`underset(0)overset(1)int (1)/(f^(2)(x)+1)dx lt(f(1))/(f'(1))`

C

`underset(0)overset(1)int (1)/(f^(2)(x)+1)dx lt(tan^(-1)(f(1)))/(f'(1))`

D

`underset(0)overset(1)int (1)/(f^(2)(x)+1)dx =(f(1))/(f'(1))`

Text Solution

Verified by Experts

The correct Answer is:
C

It is given that f'(x) is decreasing on [0,1]. Therefore, f'(1) is the least value of f'(x) in [0,1].
`:. F'(x) ge f'(1)` for all `x in [0,1]`
`rArr (f'(x))/(f^(2)(x)+1) ge (f'(1))/(f^(2)(x)+1)`
`rArr underset(0)overset(1)int (f(x))/(f^(2)(x)+1)dx ge underset(0)overset(1)int (f'(1))/(f^(2)(x)+1)dx`
`rArr [tan^(-1)(f(x))]_(0)^(1) ge underset(0)overset(1)int (f'(1))/(f^(2)(x)+1)dx`
`rArr tan^(-1)(f(1))-tan^(-1)(f(0)) ge underset(0)overset(1)int (f'(1))/(f^(2)(x)+1)dx`
`rArr tan^(-1)(f(1)) ge underset(0)overset(1)int (f'(1))/(f^(2)(x)+1)dx`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f:[0,1]rarr[0,oo) be a differentiable with decreasing first derivative &f(0)=0 ,then int_(0)^(1)(dx)/(f^(2)(x)+1) is (A) <(tan^(-1)f(1))/(f'(1)) (B) <(f(1))/(f'(1)) (C) <(tan^(-1)f'(1))/(f'(1)) (D) <=(f(1))/(f'(1))

Suppose |[f'(x),f(x)],[f''(x),f'(x)]|=0 is continuously differentiable function with f^(prime)(x)!=0 and satisfies f(0)=1 and f'(0)=2 then (lim)_(x->0)(f(x)-1)/x is 1//2 b. 1 c. 2 d. 0

A function f satisfies the condition f(x)=f'(x)+f''(x)+f''(x)+…, where f(x) is a differentiable function indefinitely and dash denotes the order the derivative. If f(0) = 1, then f(x) is

Let f:R rarr R be a differentiable and strictly decreasing function such that f(0)=1 and f(1)=0. For x in R, let F(x)=int_(0)^(x)(t-2)f(t)dt

If f(x) is a differentiable function satisfying |f'(x)|le4AA x in [0, 4] and f(0)=0 , then

If f(x) is a differentiable function satisfying |f'(x)| le 2 AA x in [0, 4] and f(0)=0 , then

If f(x)gt0 and differentiable in R, then : f'(x)=

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. Let f:R to R be a thrice differentiable function. Suppose that F(1)=0,...

    Text Solution

    |

  2. Let f:(0,prop) to R be continous function such that F(x)=int(0)^(x) ...

    Text Solution

    |

  3. If f:[0,1] to [0,prop) is differentiable function with decreasing fir...

    Text Solution

    |

  4. If f(x) is differentiable function and f(x)=x^(2)+int(0)^(x) e^(-t) (x...

    Text Solution

    |

  5. If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 an...

    Text Solution

    |

  6. If a function y=f(x) such that f'(x) is continuous function and satisf...

    Text Solution

    |

  7. The maximum value of f(x)=int(0)^(1) t sin (x+pi t)dt is

    Text Solution

    |

  8. If I(n)=int(0)^(pi) e^(x)sin^(n)x " dx then " (I(3))/(I(1)) is equal t...

    Text Solution

    |

  9. If k=int(0)^(1) (e^(t))/(1+t)dt, then int(0)^(1) e^(t)log(e )(1+t)dt i...

    Text Solution

    |

  10. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  11. The value of int(-1)^(1) ((logx+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  12. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  13. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  14. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  15. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  16. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  17. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  18. If f(x+f(y))=f(x)+y for all x,y in R and f(0)=1, then int(0)^(10) f(10...

    Text Solution

    |

  19. If alpha,beta(beta gt alpha) are the roots of f(x)=-ax^(2)+bx+c=0 and ...

    Text Solution

    |

  20. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |