Home
Class 12
MATHS
If a function y=f(x) such that f'(x) is ...

If a function y=f(x) such that f'(x) is continuous function and satisfies
`(f(x))^(2)=k+int_(0)^(x) [{f(t)}^(2)+{f'(t)}^(2)]dt,k in R^(+) `, then

A

f(x) is an increasing function for all ` x in R`

B

f(x) is a bounded function

C

f(x) is neither even nor odd function

D

If k=100, then f(0)=10.

Text Solution

Verified by Experts

The correct Answer is:
A, C

We have
`(f(x))^(2)=k+underset(0)overset(x)int [{f(t)}^(2)+{f'(t)}^(2)]dt " "`.....(i)
Differentiating with respect of x, we obtain
`2f(x)f'(x)={f(x)}^(2)+{f'(x)}^(2)`
`rArr {f(x)=f'(x)}^(2)=0`
`rArr f(x)-f'(x)=0`
`rArr f'(x)=f(x)`
`(f'(x))/(f(x))=1`
`rArr log(f(x))=x+logC rArrf(x)=Ce^(x)" "`....(ii)
Putting x=0 in (i), we obtain
`f(0)=k+0 rArr f(0)=k rArr C=k`
Putting C=k in (ii), we obtain `f(x)=ke^(x)`.
We observe that f(x) is an increasing function for all `x in R` and is not bounded. Also, it is neither even nor odd.
If k=100, then f(x)`=ke^(x)`, gives
f(x)`=100e^(x) rArr f(0)=100=100`
Hence, options (a) and (c ) are correct.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

A function f(x) satisfies f(x)=sin x+int_(0)^(x)f'(t)(2sin t-sin^(2)t)dt is

A continuous function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt then f(1)=

f:R rarr R;f(x) is continuous function satisfying f(x)+f(x^(2))=2AA x in R, then f(x) is

f:R rarr R;f(x) is continuous function satisfying f(x)+f(x^(2))=2AA x in R, then f(x) is

Let f be a continuous function on R and satisfies f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt, then which of the following is(are) correct?

If a continuous function f satisfies int_(0)^(f(x))t^(3)dt=x^(2)(1+x) for all x>=0 then f(2)

Let f be a continuous function on (0,oo) and satisfying f(x)=(log_(e)x)^(2)-int_(1)^(e)(f(t))/(t)dt for all x>=1, then f(e) equals

If f is continuous function and F(x)=int_(0)^(x)((2t+3)*int_(t)^(2)f(u)du)dt, then |(F^(n)(2))/(f(2))| is equal to

A Function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt* Then (a)f(0) 0

If f(-x)+f(x)=0 then int_(a)^(x)f(t)dt is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If f(x) is differentiable function and f(x)=x^(2)+int(0)^(x) e^(-t) (x...

    Text Solution

    |

  2. If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 an...

    Text Solution

    |

  3. If a function y=f(x) such that f'(x) is continuous function and satisf...

    Text Solution

    |

  4. The maximum value of f(x)=int(0)^(1) t sin (x+pi t)dt is

    Text Solution

    |

  5. If I(n)=int(0)^(pi) e^(x)sin^(n)x " dx then " (I(3))/(I(1)) is equal t...

    Text Solution

    |

  6. If k=int(0)^(1) (e^(t))/(1+t)dt, then int(0)^(1) e^(t)log(e )(1+t)dt i...

    Text Solution

    |

  7. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  8. The value of int(-1)^(1) ((logx+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  9. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  10. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  11. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  12. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  13. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  14. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  15. If f(x+f(y))=f(x)+y for all x,y in R and f(0)=1, then int(0)^(10) f(10...

    Text Solution

    |

  16. If alpha,beta(beta gt alpha) are the roots of f(x)=-ax^(2)+bx+c=0 and ...

    Text Solution

    |

  17. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  18. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  19. Let f:R to R be continuous function such that f(x)=f(2x) for all x in ...

    Text Solution

    |

  20. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |