Home
Class 12
MATHS
If k=int(0)^(1) (e^(t))/(1+t)dt, then in...

If `k=int_(0)^(1) (e^(t))/(1+t)dt`, then `int_(0)^(1) e^(t)log_(e )(1+t)dt `is equal to

A

k

B

2k

C

e In 2-k

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`k=underset(0)overset(1)int (e^(t))/(1+t)dt=underset(0)overset(1)int e^(t)(1)/(underset(I" "II" ")(1+t))dt`
`rArr k=[e^(t)log(1+t)]_(0)^(1)-underset(0)overset(1)int underset(II)e^(t) log(underset(I" ")(1+1))dt`
`rArr k=e log_(e )2-underset(0)overset(1)int e^(t) log(1+t)dt`
`rArr underset(0)overset(1)int e^(t) log(1+t)dt=e" In "2-k`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If lambda=int_(0)^(1)(e^(t))/(1+t), then int_(0)^(1)e^(t)log_(e)(1+t)dt is equal to

If rArr int_(0)^(1) (e^(-t))/(t+1) dt =a, "then"int_(b-1)^(b) (e^(-1))/(t-b-1)dt is equal to

If int_(0)^(1)(e^(t))/(t+1)dt=a, then int_(b-1)^(b)(e^(-t))/(t-b-1)dt=

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

int_(0)^(1)t^(2)sqrt(1-t)*dt

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

Let A = int_(0)^(1)(e^(t))/(1+t) dt , then int_(a-1)^(a)(e^(-1))/(t-a-1) dt has the value :

2int_(0)^(t)(1-cos t)/(t)dt

If int_(0)^(1)(e^(t))/(1+t)dt=a, then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. The maximum value of f(x)=int(0)^(1) t sin (x+pi t)dt is

    Text Solution

    |

  2. If I(n)=int(0)^(pi) e^(x)sin^(n)x " dx then " (I(3))/(I(1)) is equal t...

    Text Solution

    |

  3. If k=int(0)^(1) (e^(t))/(1+t)dt, then int(0)^(1) e^(t)log(e )(1+t)dt i...

    Text Solution

    |

  4. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  5. The value of int(-1)^(1) ((logx+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  6. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  7. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  8. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  9. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  10. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  11. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  12. If f(x+f(y))=f(x)+y for all x,y in R and f(0)=1, then int(0)^(10) f(10...

    Text Solution

    |

  13. If alpha,beta(beta gt alpha) are the roots of f(x)=-ax^(2)+bx+c=0 and ...

    Text Solution

    |

  14. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  15. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  16. Let f:R to R be continuous function such that f(x)=f(2x) for all x in ...

    Text Solution

    |

  17. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  18. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |

  19. If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I(1)=in...

    Text Solution

    |

  20. Let f(x)=lim(n to oo ) {(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(...

    Text Solution

    |