Home
Class 12
MATHS
Let f(x)=lim(n to oo ) {(n^(n)(x+n)(x...

Let
`f(x)=lim_(n to oo ) {(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(x^(2)+n^(2))(x^(2)+(n^(2))/(4))...(x^(2)+(n^(2))/(n^(2))))}^(x//n)`for all `x gt0`. Then,

A

`f((1)/(2))gef(1)`

B

`f((1)/(3))lef((2)/(3))`

C

`f'(2) le 0`

D

`(f'(3))/(f(3))ge(f'(2))/(f(2))`

Text Solution

Verified by Experts

The correct Answer is:
B, C

We have,
`f(x)=underset(n tooo)lim{(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(x^(2)+n^(2))(x^(2)+(n^(2))/(4))...(x^(2)+(n^(2))/(n^(2))))}^(x//n)`
`rArr logf(x)=underset(n to oo)lim(x)/(n)"log"{underset(r=1)overset(n)prod((x+(n)/(r )))/((x^(2)+(n^(2))/(r^(2)))).(n)/(r)}`
`rArr log f(x)=underset(n to oo)lim(x)/(2)underset(r=1)overset(n)sum log{((x+(n)/(r ))/(x^(2)+(n^(2))/(r^(2)))).(1)/((r)/(n))}`
`rArr log f(x)=underset(n to oo)lim(x)/(n)underset(r=1)overset(n)sumlog{(1+(r )/(n)x)/(1+((r )/(n)x)^(2))}`
`rArr log f(x)=xunderset(n to oo)lim underset(r=1)overset(n)sum log{(1+(r)/(n)x)/(1+((r )/(n)x)^(2))}(1)/(n)`
`rArr log f(x)=x underset(0)overset(1)int log{(1+tx)/(1+(tx)^(2))}dt`
`rArr log f(x)=underset(0)overset(x)int log((1+u)/(1+u^(2)))du`, where u=tx
`rArr(f'(x))/(f(x))=log((1+x)/(1+x^(2)))" "`.......(i)
We observe that `f(x)gt 0` for all`a gt 0`.
Also, `log((1+x)/(1+x^(2)))gt0hArr(1+x)/(1+x^(2))gt1hArrxgtx^(2)hArr0ltxlt1`
`:.(f'(x))/(f(x))gt0" for "0ltxlt1" and "(f'(x))/(f(x))lt0" for "x gt1" "`...(ii)
`rArr f(x)` is increasing on (0,1) and decreasing on `(1,oo)`.
`rArr f((1)/(2))lef(1)" and "f((1)/(3))lef((2)/(3))`
So option(b) is correct and option (a) is incorrect.
From(ii),we obtain
`f'(2)lt 0`. So,option (c ) is correct.
From(i), we obtain
`(f'(3))/(f(3))-(f'(2))/(f(2))=log(4)/(10)-log(3)/(5)=log((2)/(3))lt 0`
`rArr (f'(3))/(f(3))lt(f'(2))/(f(2))`. So, option (d) is not correct.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

f(x)=lim_(n rarr oo)((n^(n)(x+n)(x+(n)/(2))...(x+(n)/(n)))/(n!(x^(2)+n^(2))(x^(2)+(n^(2))/(4))......(x^(2)+(n^(2))/(n^(2))))) foe all x>0. Then

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

lim_(x rarr0)(e^(x)-1-x-(x^(2))/(2!)-.........-(x^(n))/(n!))/(x^(n+1))

Let f(x)=lim_(n rarr oo)(log(2+x)-x^(2n)sin x)/(1+x^(2n)) then

If f(x)=lim_(n rarr oo)(tan pi x^(2)+(x+1)^(n)sin x)/(x^(2)+(x+1)^(n)) then

Show that: (x)+(x+(1)/(n))+(x+(2)/(n))+...+(x+(n-1)/(n))=nx+(n-1)/(2)

lim_(x rarr oo) (x^(n)+a^(n))/(x^(n)-a^(n))= ________.

lim_(n rarr oo)(n)/(2^(n))int_(0)^(2)x^(n)dx equals

lim_ (n rarr oo) n ^ (2) (x ^ ((1) / (n)) - x ^ ((1) / (n + 1))), x> 0

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If k=int(0)^(1) (e^(t))/(1+t)dt, then int(0)^(1) e^(t)log(e )(1+t)dt i...

    Text Solution

    |

  2. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  3. The value of int(-1)^(1) ((logx+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  4. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  5. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  6. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  7. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  8. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  9. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  10. If f(x+f(y))=f(x)+y for all x,y in R and f(0)=1, then int(0)^(10) f(10...

    Text Solution

    |

  11. If alpha,beta(beta gt alpha) are the roots of f(x)=-ax^(2)+bx+c=0 and ...

    Text Solution

    |

  12. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  13. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  14. Let f:R to R be continuous function such that f(x)=f(2x) for all x in ...

    Text Solution

    |

  15. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  16. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |

  17. If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I(1)=in...

    Text Solution

    |

  18. Let f(x)=lim(n to oo ) {(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(...

    Text Solution

    |

  19. The total number of distinct x in [0,1] for which int(0)^(x) (t^(2))...

    Text Solution

    |

  20. For x in R,x ne 0, if y(x) is differentiable function such that xint(1...

    Text Solution

    |