Home
Class 12
MATHS
For x in R,x ne 0, if y(x) is differenti...

For `x in R,x ne 0`, if y(x) is differentiable function such that `xint_(1)^(x) y(t)dt=(x+1)int_(1)^(x) t y (t) dt`, then y(x)equals (where C is a constant).

A

`Cx^(3)e^(1//x)`

B

`(C )/(x^(2))e^(-1//x)`

C

`(C )/(x^(2))e^(-1//x)`

D

`(C )/(x^(3))e^(-1//x)`

Text Solution

Verified by Experts

The correct Answer is:
D

We have,
`xunderset(1)overset(x)int y(t)dt=(x+1)underset(1)overset(x)int t y (t) dt" "`...(i)
Differenting with respect to x,we get
`underset(1)overset(x)int y(t)dt+x y(x)=underset(1)overset(x)int t y (t) dt+(x+1) xy(x)`
`rArr underset(1)overset(x)int y(t)dt=underset(1)overset(x)int ty(t)dt+x^(2)y(x)`
Differentiating with respect to x, we get
`y(x)=xy(x)+x^(2)(dy)/(dx)(x)+xy(x)`
`rArr (1-3x)y(x)=x^(2)(d)/(dx)(y(x))`
`rArr ((1)/(x^(2))-(3)/(x))dx=(d(y(x)))/(y(x))`
Integrating, we obtain.
`-(1)/(x)-3logx=log y(x)+logk`
`rArr-(1)/(x)=log(kx^(3)y(x))`
`rArr kx^(3)y(x)=e^(-1//x)rArr y(x)=(1)/(kx^(3))e^(-1//x)rArry(x)=(C )/(x^(3))e^(-1//x)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

For x in R, x != 0 if y(x) is a differentiable function such that x int_(1)^(x)y(t)dt = (x+1) int_(1)^(x)ty(t)dt , then y(x) equals (where C is a constant)

For x in x!=0, if y(x) differential function such that x int_(1)^(x)y(t)dt=(x+1)int_(1)^(x)ty(t)dt then y(x) equals: (where C is a constant.)

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If k=int(0)^(1) (e^(t))/(1+t)dt, then int(0)^(1) e^(t)log(e )(1+t)dt i...

    Text Solution

    |

  2. If k in N and I(k)=int(-2kp)^(2kpi) |sin x|[sin x]dx, where [.] denote...

    Text Solution

    |

  3. The value of int(-1)^(1) ((logx+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2...

    Text Solution

    |

  4. If int(0)^(1) alphae^(betax^(2))sin(x+k)dx=0 for some alpha,beta in R,...

    Text Solution

    |

  5. int(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest in...

    Text Solution

    |

  6. Let f(x)=In[cos|x|+(1)/(2)] where [.] denotes the greatest integer fun...

    Text Solution

    |

  7. lim(x to 0)(int(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

    Text Solution

    |

  8. If int(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5, then f(8)=

    Text Solution

    |

  9. lim(x to 0)(int(-x)^(x) f(t)dt)/(int(0)^(2x) f(t+4)dt) is equal to

    Text Solution

    |

  10. If f(x+f(y))=f(x)+y for all x,y in R and f(0)=1, then int(0)^(10) f(10...

    Text Solution

    |

  11. If alpha,beta(beta gt alpha) are the roots of f(x)=-ax^(2)+bx+c=0 and ...

    Text Solution

    |

  12. The value of the constant a gt 0 such that int(0)^(a) [tan^(-1)sqrt(x)...

    Text Solution

    |

  13. If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, the...

    Text Solution

    |

  14. Let f:R to R be continuous function such that f(x)=f(2x) for all x in ...

    Text Solution

    |

  15. The value of int(0)^(pi//4) (tan^(n)x+tan^(n-2)x)d(x-([x])/(1!)+([x]...

    Text Solution

    |

  16. The value of the definite integral int(t+2pi)^(t+5pi//2) {sin^(-1)(c...

    Text Solution

    |

  17. If f(x) is an integrable function on [(pi)/(6),(pi)/(3)] and I(1)=in...

    Text Solution

    |

  18. Let f(x)=lim(n to oo ) {(n^(n)(x+n)(x+(n)/(2))....(x+(n)/(2)))/(n!(...

    Text Solution

    |

  19. The total number of distinct x in [0,1] for which int(0)^(x) (t^(2))...

    Text Solution

    |

  20. For x in R,x ne 0, if y(x) is differentiable function such that xint(1...

    Text Solution

    |